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Abstract

i Droughts often evolve gradually and cover large areas, and therefore, affect many peo-
> ple and activities. This motivates developing techniques to integrate different satellite
;s observations, to cover large areas, and understand spatial and temporal variability of
.+ droughts. In this study, we apply probabilistic techniques to generate satellite derived
s meteorological, hydrological, and hydro-meteorological drought indices for the world’s
s 156 major river basins covering 2003—2016. The data includes Terrestrial Water Storage
7 (TWS) estimates from the Gravity Recovery And Climate Experiment (GRACE) mis-
s sion,alongwithsoil moisture, precipitation,and evapotranspirationreanalysis. Different
o drought characteristics of trends, occurrences, areal-extent, and frequencies correspond-
10 ing to 3-, 6-, 12-, and 24-month timescales are extracted from these indices. Drought
1»evolution within selected basins of Africa, America, and Asia is interpreted. Canonical
1> Correlation Analysis (CCA) is then applied to find the relationship between global hydro-
1 meteorological droughts and satellite derived Sea Surface Temperature (SST) changes.

14 Thisrelationship is then used to extract regions, where droughts and teleconnections are
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15 strongly interrelated. Our numerical results indicate that the 3- to 6-month hydrologi-
16 cal droughts occur more frequently than the other timescales. Longer memory of water
17 storage changes (than water fluxes) has found to be the reason of detecting extended
15 hydrological droughts in regions such as the Middle East and Northern Africa. Through
v CCA, we show that the El Nifio Southern Oscillation (ENSO) has major impact on the
0 magnitude and evolution of hydrological droughts in regions such as the northern parts
» of Asia and most parts of the Australian continent between 2006 and 2011, as well as
»» droughts in the Amazon basin, South Asia, and North Africa between 2010 and 2012.
;3 The Indian ocean Dipole (I0D) and North Atlantic Oscillation (NAO) are found to have
uregional influence on the evolution of hydrological droughts.

Keywords: GRACE Terrestrial Water Storage (TWS), Global Droughts, Canonical

Correlation Analysis (CCA), Sea Surface Temperature (SST), Teleconnections, Drought

Hot Spots

»1. Introduction

% Theglobalhydrological (water) cyclehasbeenunderinfluence ofboth climatechange
» and anthropogenic modifications (Tiwari et al., 2009; Zhao et al., 2015). A study by Feng
»sand Zhang (2015) suggests that the ongoing global warming could lead to considerable
2 declines in soil water due to a lack of snow melt water recharge to the soil during spring
s andsummer. Increasingthetemperatureandlesswaterstoredinthesurfacesoilmoisture
» mightlead to areduction of precipitation in semi-arid regions. Therefore, the possibility
»of increasing drought events can be expected in future.

£ In general, droughts have been categorized into the groups of meteorological or clima-
s+ tological, hydrological, agricultural, and socioeconomic, among which the first two types
s are of interest in this study (find a critical discussion in Van Loon (2015)). Since drought
3 iIsacomplex phenomenon, thereisnouniversal definition forit (Mishraand Singh, 2010).
» Often, the term ‘meteorological drought’ is understood as the shortage in catchment’s
s water fluxes, i.e., precipitation ornet precipitation, i.e. precipitation minus evapotranspi-
» ration. The term ‘hydrological drought’is associated with the shortfalls of water storage,

« as well as (net) precipitations at the same time. Standardized Precipitation Index (SPI,
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McKeeetal., 1993; Guttman, 1999) and Standardized Precipitation-Evapotranspiration
Index (SPEI, Vicente-Serrano et al., 2010) are often used to represent meteorological
droughts. Water storage changes are derived by analyzing soil moisture (and in some
cases groundwater) data and used to produce Standardized Soil (Storage) Index (SSI,
Mishra and Singh, 2010). In a practical sense, hydro-meteorological droughts maybe
quantified by relating SPI or SPEI and SSI or by merging variables that are used to
define these indices! (see e.g., Hao and AghaKouchak, 2013; Carrlao et al., 2016).

Meteorological and hydrological droughts are inter-related through interactions that
happen within the water cycle (Van Loon and Laaha, 2015). Generally speaking, any
higher than normal net evaporation rates over the oceans can change precipitation rates
onlandincreasing continental water storage (Muelleretal.,2012). In contrast, ashortage
in precipitation over land, along with a higher evaporation caused by a meteorological
drought may lead to shortage in continental water storage and cause a hydrological
drought (e.g., Wilhite, 2000; Tallaksen et al., 2004). Examples of prolonged meteoro-
logical drought conditions leading to hydrological droughts are discussed by, e.g., Trigo
et al. (2010); van Dijk et al. (2013); Van Loon (2015); Forootan et al. (2017) and Schu-
macher et al. (2018). Index-based drought monitoring systems are often adopted for
operational purpose. Examples include the SPEI (e.g., Beguer1aet al., 2010) used by the
European commission? or temperature-precipitation indices by the US’s Global Drought
Information Systems3. The Global Integrated Drought Monitoring and Prediction Sys-
tem (GIDMaPS) from the University of California Irvine# is an experimental system that
combines various satellite data and climate re-analysis datasets to compute univariate
and multivariate drought indices (see other examplesin, e.g., Ahmadalipouretal., 2017).
Scientistsalsobase their drought analyses and projections on model simulations, seee.g.,
Samaniego et al. (2018). A combination of data assimilation and probabilistic forecast-

ing techniques is used in Yan et al. (2017) to generate more realistic seasonal drought

s forecasts for the USA.

http://spei.csic.es/home.html
®http://edo.jrc.ec.europa.eu/gdo/php/index.php?id=2001
Swww.drought . gov/gdm/
"ttp://drought.eng.uci.edu/
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68 Since the launch of the Gravity Recovery And Climate Experiment (GRACE, Tapley
e etal.,2004)satellite gravitymissionin 2002, drought monitoring studieshavebeen using
70 its estimates of Terrestrial Water Storage (TWS, a vertical integration of surface water,
» soil moisture, groundwater, and biomass water content) changes to understand global
» and regional hydrological processes (Chen et al., 2009; Rodell et al., 2009; Frappartet
7 al., 2012; Houborg et al., 2012; Li et al., 2012; Mueller et al., 2012; Long et al., 2013;
7« Thomas et al., 2014; Khaki et al., 2017). For example, Yirdaw et al. (2008) investigated
75 2002—2003 droughts in the Saskatchewan River basin. In the Murray Darling basin, the
» hydrological drought of 2002—2006 was found to be related to the meteorological drought
7 that was continued from 2000 (Leblanc et al., 2009; Forootan et al., 2012). Various
s studies have demonstrated the connection between the long-term trends or changesin
7o the amplitude of seasonal (net) precipitation and TWS (e.g., Zeng, 1999; Seoane et al.,
so 2013; Koster et al., 2000; Strassberg et al., 2007). Khandu et al. (2016); Forootan et
s al. (2017) and Schumacher et al. (2018), for example, showed that both climatechange
&2 and anthropogenic contribute to the water storage decline (mainly in groundwater) in
ss South Asia, the Middle East, and Australia, respectively. Other studies indicate that a
s« persistent decrease in seasonal precipitation leads to a decline in TWS (e.g., Voss et al.,
ss 2013; Forootan et al., 2014, 2016). Hirschi et al. (2006) studied this effect for 37mid-
ss latitude river basins in Europe, Asia, North America, and Australia, and drew a similar
&z conclusion. Examples of the application of GRACE data for assessing global water
ss storagetrends, seasonal and sub-seasonal variability and extreme events are provided in,
s €.g., Forootan and Kusche (2012); van Dijk et al. (2014); Eicker et al. (2016); Humphrey
wet al. (2016); and Kusche et al. (2016).

9 GRACE has been used to study hydrological droughts (e.g., Houborg et al., 2012;
» Sinha et al., 2007). For example, Zhao et al. (2017) developed a new monthly global
s Drought Severity Index (DSI) based on GRACE TWS and showed that it performs

» comparably to other commonly used drought metrics. In the USA’s drought monitoring

O

s system®, GRACE is used for monitoring groundwater droughts. In regional studies,

Shttps://grace.jpl.nasa.gov/applications/drought-monitoring/
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s Yirdaw et al. (2008) and Awange et al. (2016b) applied the Total Storage Deficit Index

O

» (TSDI) proposed by Narasimhan and Srinivasan (2005) using GRACE TWSestimates.

e

¢« Most of these existing studies (e.g., Thomas et al., 2014; Zhao et al., 2015; Awange
o et al., 2016b; Khandu et al., 2016; Zhang et al., 2016) have applied GRACE TWS to

1

[=3

o describe the progress of hydrological droughts. It has also been shown that GRACE
101 derived drought indices® combining with other satellite products can better characterize

. droughts (e.g., Australia’s Millennium Drought in van Dijk et al., 2013; Zhao et al.,

1

o

s 2017, see also). A recent global study by Sun et al. (2017) indicates that GRACE along

1

o

10« with satellite derived precipitation data can be used to identify extreme hydrological

s events, although the study concludes that the length of GRACE data and its low spatial

1

o

106 Tresolution represents a limitation in extracting return periods of extreme events (find a

107 detailed investigation in Kusche et al., 2016).

108 This study adds to previous research by exploring the relationship between hydro-

0o meteorological droughts and major ocean-atmosphere ‘teleconnections’. For this, univari-

moate (i.e., hydrological and meteorological), as well as multivariate (i.e., hydro-meteorological)

1

1 drought indices are computed for the world’s 156 major river basins that are defined by

> the Global Runoff Data Center?, and see Figure 1). SPEI and SSI are computed to as-

1

113 sess the separate impact of (net) precipitation and water storage changes on the drought

+ evolutions, respectively. We also combine the SPEI and SSI in (a probabilistic way)

1

s and develop a Multivariate Standardized Drought Index (MSDI) for each basin, which

1

e reflect hydro-meteorological drought evolutions (see also Hao and AghaKouchak, 2013;
117 AghaKouchak, 2014; Rajsekhar et al., 2015).
118 Togenerate drought indices of this study, long-term precipitation and evapotranspi-

o ration data from ERA-Interim (1980—2016, Dee et al., 2011), and TWS from GRACE

1

1

N

o (2003—2016) are used. We extend the GRACE TWS estimates backwards to 1980 using
121 the water state outputs of W3RA (1980—2012) provided by Schellekens et al. (2017). This

» extension (i) ensures a better representation of hydrological characteristics of river basins,

1

N

» and (ii) it also mitigates the possible errors in estimating probability density functions

1

N

°www.ess.uci.edu/Nvelicogna/drought_data.php

Twww.fao.org/nr/water/aquastat/irrigationmap/index.stm
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124 that are required to be computed while estimating the desired drought indices. A Monte
1»s Carlo approach is applied to estimate the impact of uncertainties of input data and the
sapplied extension backward to 1980 on the estimation of drought indices.

127 The impact of using GRACE TWS on the estimation of drought indices is compared
18 with alternative indices computed using soil moisture data from ERA-Interim reanalysis.
120 The differences between these indices reflect the contribution of other water compart-

o ments (e.g., groundwater and surface water storage) in the evolution of drought indices.

1

w

131 Besides, GRACE TWS estimates contain trends, seasonal, and inter-annual variability,

w

1

w

> which better reflect the impact of climate change and anthropogenic modifications (than
133 land surface models) in the basin scale (also see e.g., Scanlon et al., 2018; Schumacher

. etal., 2018). Therefore, analyzing GRACE derived drought indices helps us to better

1

w

issunderstand these interactions.

136 In order to represent spatio-temporal evolution of droughts, we interpret the com-
137 puted SPEI, SSI, and MSDI of selected basins in the Americas, Africa, Asia, and
138 Australia. Using the computed indices, different drought characteristics such as severity,
130 extent,and frequencies correspond tothe 3-,6-,12-,and 24- month timescales (suggested
10 by Mpelasoka et al., 2017) are investigated. Canonical Correlation Analysis (CCA, Borga
et al., 1998) is applied to relate the computed drought indices with global Sea Surface
122 Temperature (SST, Reynolds et al., 2007) change. This is done for the period of 2003—
13 2016, from which we derive hot spots, where teleconnections appear strongly related to
e droughts. This investigation, therefore, extends previous efforts that study the relation-
s ships between teleconnections and water storage changes (e.g., Garcia-Garéia et al., 2011;

s Philips et al., 2012; Anyah et al., 2018; Eicker et al., 2016; Forootan et al., 2018; Ni et
wral., 2018).

148 In summary, this study has three major contributions: (A) it provides new insights
1o about global scale drought evolution while focusing on the values water storage esti-
150 mations derived from GRACE, (B) it evaluates and discusses the properties of global

i hydrological droughts during 2003—2016 and their uncertainties, and finally (C) it ex-

1

[

1

[

> plores relationships between ocean-atmosphere teleconnections and hydro-meteorological

issdroughts over multiple regions.



FIGURE 1
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1552.1. Terrestrial Water Storage Estimates from GRACE
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GRACE Level 2 (L2) products consist of monthly gravity field solutions. Thelatest
release of L2 data (RL06) covering January 2003 to December 2015 truncated at spher-
ical harmonic degree and order 9o are downloaded from the Center for Space Research
(CSR)8. These residual coefficients represent mainly water mass changes on continents
(Ramillien etal., 2005). Degree 1 coefficients are replaced with those estimated by Swen-
son et al. (2008) to account for the movement of the Earth’s center of mass. Degree 2
and order o coefficients are replaced by those from Satellite Laser Ranging (SLR), which
are more stable than those of GRACE (e.g., Chen et al., 2007). Anomalies due to the
Glacial Isostatic Adjustment (GIA) are reduced using the output of the model provided
by Geruo et al. (2013). Correlated noise in L2 products is reduced by applying the DDK2
anisotropic filter (Kusche et al., 2009). The smoothed fields are then converted to TWS
changes following Wabhr et al. (1998). Basin average values for the 156 river basins of
Figure 1 and their errors are estimated following (e.g., Khaki et al., 2018a). Our com-
putations cover the complete mission period of 2003—2016, where Figure 2 shows the
standard deviations of basin averaged GRACE TWS, their errors, and the signal to noise
ratiowithin each basin of Figure 1. During 2003—2016, the computed basin averaged time
series are temporally interpolated (using a harmonic interpolation). This is also applied
to other data sets, thus, all available data records have been synchronized. Besides, since
other data sets have a spatial resolution different than that of GRACE L2 data, they are

converted to the spectral domain and truncated at spherical harmonic degree and order

17690 and basin averages are computed following Khaki et al. (2018a).

FIGURE 2

Shttp://www2.csr.utexas.edu/grace/
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1772.2. Global Soil Moisture, Precipitation, and Evapotranspiration Products

178 ERA-Interimisaglobal atmosphericreanalysis produced bythe European Center for
17 Medium Range Weather Forecast (ECMWF, Dee et al., 2011). The reanalysis delivers
10 several key land surface parameters such as soil moisture, vegetation, and snow, among
s others by combining various global observational datasets using an integrated forecast
1e2 model. In this study, monthly soil moisture data from four volumetriclayers are obtained
1ss from 6 hourly 0.25°X0.25° soil moisture data®. To account for meteorological changes,
15« global precipitation and evapotranspiration data are used from the provided link and the
ssvertical layers are summed up.

186 The ERA-Interim data, used in this study, cover the period 0f1980—-2016. Possible
17 lateral water storage flow has not been explicitly considered in the ERA-Interim’s soil
188 Moisture simulations, which might affect drought indices derived from soil moisture by
s incorporating higher/lower flow in some cases such as winter and after snow melt. To
100 Mmitigate the inconsistencies between the above data, and improve the accuracy of water
101 storage and water flux estimations, all above data (GRACE TWS, ERA-Interim’s soil
192 moisture, precipitation, and evapotranspiration) are spatially averaged within the 156
103 river basins of Figure 1. It is worth mentioning that the rate of change in TWS is
1« related to the net precipitation through the water balance equation. However, it has
105 been shown that GRACE TWS contains long memory of hydrological processes, while
s fluxes such as precipitation and evapotranspiration introduce water variation with shorter
107 wavelength (e.g., Rakovec et al., 2016; Forootan et al., 2017). Therefore, combining
s GRACE TWS and net precipitation data (see Section 3.2) seems to be suitable to explore

1o hydro-meteorological drought characteristics (see, e.g., Sun et al., 2017).

2002.3. Sea Surface Temperature Data
201 The Version 2 of the daily Optimum Interpolation Sea Surface Temperature (OISST)

202 datawith 0.25°X0.25° spatial resolution between 2002 and 2016 are used. Infrared satel-
203 lite data from the Advanced Very High Resolution Radiometer (AVHRR), in situ obser-

204 vations (International Comprehensive Ocean Atmosphere Dataset, Worley et al., 2005),

nttp://apps.ecmwf.int/datasets/data/interim-full-daily/

8
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s and proxies computed from sea ice concentrations are used to generate the OISST v2

2s (Reynolds et al., 2007).

TABLE 1

207 3o Method

208 3.1. Extending GRACE TWS Time Series Backwards to 1980

200 Extreme events, such as droughts, are often characterized by their duration, mag-

20 nitude (or intensity), extent, and return period. A reliable estimation of these char-

2

1 acteristics requires time series that are long enough and are also well representative of

2

> hydro-meteorological characteristics of the regions of interest (Cancelliere and Salas ,
213 2004). However, a limitation of GRACE data in drought monitoring applications is the
24 mission’s limited operational time, i.e. 2002—2017. To mitigate this problem, we use

s TWS simulation of ten global models that are published by Schellekens et al. (2017)

2

26 covering 1979—2012. From these, the W3RA model (van Dijk., 2010) is applied to extend
27 GRACE TWS in the 156 river basins of Figure 1, and TWS of other nine models isused
28 to estimate uncertainties using the collocation approach of Awange et al. (2016a). It
29 18 worth mentioning that using simulated TWS data, even after applying the following
20 corrections, is not a perfect choice and the estimated drought indices might be still over-
-n /under-estimated. However, this impact if far smaller than using short length data sets
.»to compute drought indices.

223 To extend the TWS estimates backward to 1980, a scale factor and a bias (vertical

24shift) are estimated to match the long-term W3RA TWS to that of GRACE as

Xwara = a ' * Xgrace — b, (1)

25 using the common data of 2003—2013. This means that following Scanlon et al. (2018)’s

N

s conclusion, the basin-averaged GRACE derived TWS estimates are assumed to be more

2

N

2

N

; realistic than model simulations, in terms of trends, as well as seasonal and inter-annual

28 variations. Therefore, in Eq. (1), we consider a * Xw sra for the period of 1980—2013

N



20 and extend GRACE data backward. In is worth mentioning that here the bias between
20 W3RA and GRACE is assumed to be temporally invariant, which is not asophisticated
»» assumption. Applying a time-variable bias correction, however, requires a careful extra

2

w

> research and is out of scope of this study. Errors of the extension in Eq. (1) is computed
2 using aleast squares error propagation Koch (1998), while considering the error fields of

2

w

« Figure 2 (Middle). Examples of the original W3RA TWS and the extended time series in
25 the Ganges and Nile River basins are shown in Figure 3. The extended TWS time series

260f 1980—2016 are used to compute hydrological indices as described in what follows.

FIGURE 3

273.2. Multivariate Standardized Drought Index

238 Three different drought indices of Standardized Precipitation-Evapotranspiration In-
20 dex (SPEI), Standardized Soil moisture (Storage) Index (SSI), and Multivariate Stan-
20 dardized Drought Index (MSDI) are estimated to represent different types of droughts.
.n SPEI is computed similar to Vicente-Serrano et al. (2010), which is similar to the SPI
.2 in McKee et al. (1993). In this approach, wet or dry condition are estimated based on
.3 thefrequency distribution of variables (here net precipitations) on a variety of timescales
.4 from sub-seasonal to inter-annual scales. To compute SPEI, we first fit a gamma prob-
2s ability density function to the observed net precipitation (1980—2013) and compute their
s cumulative distribution. Then, these are transformed to standard normal distributions
2 following (Wu et al., 2001). The transformed probability varies between +3.0 and -3.0
s (Edwards et al., 1997), which indicates the level of wetness and dryness, respectively.
29 In this study, SSIs are computed similar to SPEIs, but soil moisture data from ERA-
o Interim or GRACE TWS estimates are used as inputs.

251 Generating MSDI follows a statistical approach that allows us to simultaneously
2 incorporate the information of SPEI and SSI. Thus, the temporal averaging of the
3 three drought indices used in this study is treated consistently. For each two types of

¢ samples (X and Y'), the cumulative joint probability density function (Pr) is expressed

10



255 AS

Pr(X<x,Y <y)=CF(X),F(Y))=q, (2)

s where C is a copula, and F(X) and F(Y) are the marginal cumulative distribution

2

v

7 functions, and finally g is the cumulative joint probability value (Hao and AghaKouchak,

s 2013). In Eq. (2), time series of net precipitation and soil moisture or TWS changes

%]

»0 can replace the random variables of X and Y. We use Frank copula to model the
0 joint distribution in Eq. (2). Following Hao and AghaKouchak (2013), MSDI can be

s computed as

M = ®71(q), (3)

2 Where@isthestandard normal distribution function, whichiscomputed hereempirically.
23 In all the above drought indices, the negative index represents that the climate condition
x4 1S dry (drought), while a positive index indicates a wet climate condition (AghaKouchak,

2652014).

266 Uncertainty of the Computed Drought Indices:

267 To account for the uncertainty of input data, while estimating drought indices, a
s Monte Carlo approach is implemented. For this, we generate samples of soil moisture,
0 TWS, and net precipitation data from a random distribution N(u, o), where u represents
2o the mean values derived by processing the input data in Section 2, and o of TWS and
»» soil moisture is derived from the results of Figure 2 (Middle). For basin averaged net
»» precipitation, we consider a multiplicative error of 30% (Tian et al., 2013). To estimate
23 the uncertainty of drought indices, we generate 1000 samples of TWS and net precipita-
274 tion time series. As aresult, 1000 sets of respective drought indices are computed, whose
s median and range are used to interpret the severity of droughts and their uncertainties,

werespectively.

11



277 Types of Drought Indices Estimated in this Study:

278 As mentioned, for each river basin of Figure 1, the SPET is calculated using net
29 precipitation from ERA-Interim data, while SSIsm is based on ERA-Interim’s soil mois-
0 ture data that largely represent agricultural droughts, and SSIT w s is computedusing
.s1 GRACE TWS data. In a probabilistic manner (Eq. (3)), MSDIsn is estimated by simul-
-2 taneously using ERA-Interim soil moisture and net precipitation from ERA-Interim. Fi-
23 nally, MSDIrws is derived by combining GRACE TWS and net precipitation data from
s« ERA-Interim. Therefore, our estimate MSDIs will likely represent hydro-meteorological

ssdroughts.

263.3. Extracting Drought Characteristics in Different Timescales

287 Tobetter analyze drought characteristics using the various drought indices, different
288 timescales are considered. Averaging periods of 3-, 6-, 12- and 24-month are used here
0 to extract persistent patterns. These timescales are generally relevant to a range of
20 agricultural and hydrological systems and facilitate a better interpretation of drought

 events (Mpelasoka et al., 2017). For any of these timescales, a drought event begins

2

O

»» when the drought indices are continuously less than -0.9 for at least 3 months (dry

sscondition threshold suggested by Mpelasoka et al., 2017).

2043.4. Canonical Correlation Analysis (CCA)

295 CCA seeks to find the linear relationship between two sets of multidimensional vari-
s ables x and y. CCA extracts canonical coefficients u and v such that X = xTu and
7 Y = yTv (XandY are canonical variates) possess a maximum correlation coefficient

»8(Chang et al., 2013) using the following function,

E[XY]
" sqri(E[X7IELY 7])
E[u” xyTv]
- sqrt(E[uTxxTu] E[vTyyTv]) (4)
_ u? Cuyu

sgriu’ ¢ uvtC u1)’

12



20 Where Cxx and Cyy are covariance matrices of x and y, respectively and the objective in
s0 above function is to maximize the correlation R. We use an eigenvalue decomposition
;0 procedure (Forootan, 2014) to find the linear weights producing canonical coefficients,
s Which imply maximum possible correlations (see details in Steiger and Browne, 1984).
sz There are different canonical coefficients within each set (at most minimum of variable
1« numbers in X and Y') leading to different uncorrelated coefficients. Nevertheless, the
s combination of variables with the first canonical coefficient for each set has the highest
s0s possible multiple correlations with the variables in the other set.

307 Once the coefficients are calculated, they can be used to find the projection of xand y
s onto u and v as canonical variates with maximum correlations. In this study, x contains

200 the vectors of SPEI, SSI, and MSDI time series calculated for the 156 river basins of

s0 Figure 1, while y contains SST data. Different grid windows (5°X5°) are selected over

1 the oceans including regions, where El Nino Southern Oscillation (ENSO; Barnston et

3

> al., 1987), North Atlantic Oscillation (NAO; Barnston et al., 1987), and Indian Ocean

3

3

s Dipole (IOD; Rao et al., 2002), as well as regions randomly selected in other oceanic

24 basins as shown in Figure 4. These choices can help to better capture the global climate

»s impact on the land hydrological events. SST data over different boxes (cf. Figure 4) are
ns preferred over the climate indicators (e.g., ENSO, IOD, and NAO indices, see Table 1
s for their corresponding references) because: (1) larger number of input variables in the
215 CCA canimproveits performanceto extractthe optimize relationship between predictors
219 (i.e., SST or teleconnection indices) and predictands (i.e., drought indices), (2) spatially
s0 distributed boxes better represent oceanic variations than single indices, and (3) SST is
s a better predictor of precipitation than pressure anomaly often used to produce climate
2> indices (e.g., L'Heureux et al., 2015). These facts will likely result in better predictions

»30f global droughts.

FIGURE 4

13



s44. Results

s2s4.1. Drought Indices

326 Here, we first summarize the global drought results derived by computing SPEI,
27 SSI, and MSDI for the 156 basins (locations are depicted in Figure 1). The annual
s average of each drought index including SPEI, SSI (SSIsm and SSITws), and MSDI

3

N

50 (MSDIsm and MSDITws) are calculated for the period of 2004 to 2016. Figure 5 shows
;0 an example of the averaged drought indices computed in 2008. Maps of other years can

s be found in the Electronic Supplementary Material (ESM).

FIGURE 5

32 In general, several similarities are found between SPEI, SSIsm by ERA-Interim,
53 and SSIT ws by GRACE, e.g., for basins located in the Australian continent or North
13« America. These indices, however, contain considerable differences in terms of amplitude
;s and phase. For example, it can be seen that there are stronger agreements between

3.6 SSIsm or MSDIsm and SPEI than between SSItws or MSDItws and SPEI. The

3

w

; reason is that changes in soil moisture has a higher correlation with net precipitation
1 than GRACE TWS. Because, in general, changes in TWS involve complicated surface

3

w

o and sub-surface processes, while soil moisture changes is dominated by precipitation

o variations (see, e.g., Brocca et al., 2013). We also find that in some basins MSDI fits

3

'

1 better to SSI indices than SPEI such as those located in the north part of Africa. This

3

o

s similarity indicates that water storage deficiency is likely the dominant contribution in
sshydrological drought evolution within these basins.

344 Correlations between different pairs of drought indices (2003—-2016) are shown in Fig-
us ure 6. Overall, the SSI from both GRACE TWS and ERA-Interim’s soil moisture
16 (SSIsm or SSIT w s) indicates more pronounced dry and wet episodes than SPEI and
s7 MSDI. The reason is that SPEI and MSDI incorporate net precipitation, which
15 contains higher frequency oscillations than the water storage records used in the SSI
10 (SSIsm or SSIT ws). Stronger multi-year trends in water storage data leads to hydro-

sological drought indices with higher magnitude.
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FIGURE 6

Figure 77 presents average trends of SPEI, SSIt ws and MSDIr ws (derived from
GRACE) for the 156 basins during the study period (2004—2016). It can be seen that
the MSDI over some regions such as the Nile basin and South America is closer to
SPEI, and in some other cases is closer to SSI, e.g., within Asia and the Australia’s
western parts. In the Nile basin, climate variability plays the major role, e.g., through
precipitation (Awange et al., 2014; Omondi et al., 2014), which is better reflected in the
estimated SPEI and MSDI. On the other hand, in the case of Asia and specifically
Middle East, water storage changes, mainly due to anthropogenic impacts, largely drive
the evolution of drought indices, especially those of GRACE TWS (also shown in Figure
6). This impact can be seen in SSIT w s and MSDIt ws. Most of the basins located in
Middle East exhibit long-term droughts caused by persistent below normal precipitation
and decline in water storage (see e.g., Forootan et al., 2017; Khaki et al., 2018b). In
the southern parts of South America, the negative trend can be related to the ice loss
over e.g., the Patagonian Ice Fields (e.g., Foresta et al., 2018). Minor effects can also
be caused by the 2010 Maule earthquake. On the other hand, some parts such as the
southeast and northeast parts of Asia experience a positive precipitation trend. As a
result, SPEI indicates wet episodes in these regions. Negative values seen in theSPET
over the Nile basin are also reflected in the MSDI even though water storage remains

in the normal range, thus, shows that less than normal net precipitation causes droughts

10in this basin.

371

372

373

374

375

FIGURE 7

Here, we select 12 basins (of various hydro-climatological conditions) to discuss the
characteristics of drought indices. These include the Mississippi and Colorado basins
from North America, the Amazon and Salado Atlantico basins from South America, as
well as the Ganges, Brahmaputra, and Euphrates basins from Asia, and finally the Niger,

Chad, Nile and Congo basins in Africa. To this end, for any of these basins, spatially

15



w6 averaged SPEI, SSI (both from ERA-Interim and GRACE), and MSDI (derived from
;7 ERA-Interim and GRACE) during the study period are computed and demonstrated in
s Figures 8 and 9. To enhance the visual comparisons, errors of the drought indices are
ssnot shown in these figures.

380 We find similarities between all the drought indices within the Nile (except during
1 2014—2016) and Amazon basins, which show that net precipitation and water storage
2 changes are highly correlated in these basins. The important difference between SPEI
sss and SSI or MSDI are found to be a phase shift of 1 to 6 months. The values of SSI and
ss« MISDI change slower than SPEI from one year to other. This, for example, describes
s3ss the main differences between SPEI and MSDI or SSI in the Nile basin, where the

s net precipitation decrease, e.g., in 2008 (due to La Nina) and the deficiency of incoming

<]

;7 water slowly changesthe SSIof 20082010 (comparethe green and black curvesin Figure
;88 8-Nile).

389 In general, our estimated SPEIs are found to be often different from the SSIs and
30 MSDIs in other basins. Over the Euphrates (cf. Figure 9), SPEI shows a wet period
s in 2011 and 2013 (SPEI > 1, indicating wet and very wet episodes), while other indices

3

©

> represent dry periods (starting in 2008 and the SSI values changes from o to less than -2
33 in 2015). A similar pattern can be seen in Ganges, Brahmaputra, and Euphrates. This
504 1S due to a long-term water storage depletion in these basins (see Figure 7), even though
s SPET and SSIsm often shows positive values (e.g., during 2013—2014 in the Ganges).

306 In addition to the phase shifts between SPEI and other SSI or MSDI,remarkable
s> amplitude discrepancies are also found within most of the basins, e.g., Lake Chad 2007—
38 2009, Mississippi 2010—2012,and Colorado 2013—2016 (Figure 8). Thereason is mainly
w0 attributed to the multi-year trend in the water storage changes, which requires a long

woperiod of wet or dry episodes to return to a normal level.

FIGURE 8
401

FIGURE 9

402 In summary, the results indicate that the realistic water storage oscillations and trends
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w3 in GRACE TWS data considerably change the magnitude and timing of drought indices
w4 in the assessed basins. However, using only GRACE data to assess hydrological drought
s Will be likely misleading, since the SST and MSDI indices can be dominantly influenced
ws by existing TWS trends, which is evident by comparing the green and cyan curves in

4

o

» Figure 9. This will be clearer if one compares the indices time series with water storage
a8 variations. Thus, average groundwaterand soil moisturetimeseriesare obtained fromthe

o WaterGAP Global Hydrology Model (WGHM; more details on Doll et al., 2003; Miiller

4

o

no etal.,2014) withinfourselected basins, i.e., Ganges, Brahmaputra, Euphrates, and South

4

i interior. WGHM ischosen herebecause, beside accounting forthedominanthydrological

4

» processes that occur on the spatial scale of 50 km, it also accounts for human water use.
3 However, it should be noted that WGHM’s simulations contain uncertainties, thus, its
na outputs might be interpreted with caution. The comparison performed here is to assess

s hydrological droughts from an independent source rather than GRACE TWS estimates.

4

4

s From our results, it can be seen that negative groundwater trends are largely captured

4

7 by SSITtws and to a lesser degree by MSDITws. Moreover, the differences between soil

s moisture and groundwater variations can explain the large discrepancies between SSIsm

4

»o and SSIT w s. This discrepancy, however, does not equally impact MSDI. These result
20 confirm our previous finding that the estimated SSI indices are more sensitive to water
m storage changes than MSDI.

422 In Figure 10, wedemonstrate theimpact ofuncertainties onthe phaseand magnitude
=3 of the drought indices for the two basins of Amazon and Ganges. Our numerical results
24+ indicatethat considering 30% multiplicative errorsresultinup to 1-levelin the magnitude
»s of SPEIs. Forcomputing SSIs, while considering the realistic errors of Figure 2 (Middle),
»s an error of up to 0.7-level is estimated for the magnitude of SSIs. As a result, the
s uncertainty of MSDIs is dominated by the error of net precipitation as can be seen in

»s Figure 10. These uncertainties cause an error in estimating the timing of droughts with

N

o certain level of severity, which can reach up to 3 to 6 months. It is also worth mentioning

4

N

s0 that the magnitude of the estimated drought indices, discussed above, depends on the
s model data used to extend GRACE TWS backward to 1980. However, our numerical

> assessments (notshown here) indicate that the choice of model hasonlymarginally effect,

4

w

17



swhich is less than the level of uncertainty shown in Figure 10.

FIGURE 10

1344.2. Characteristics of Global Droughts

435 In this section, we analyze drought and its spatial and temporal variations within the

s 156 river basins of this study. To this end, following Mpelasoka et al. (2017), drought

4

w

s indices are considered at four timescales of 3-, 6-, 12- and 24-month. For any of these
s timescales, the drought indices are calculated and are assumed to be a drought when
s they are continuously less than -0.9 for at least three months (dry condition threshold
wo suggested by Mpelasoka et al., 2017). Figure 11 illustrates the frequency (month per
w1 year) of detected droughts for each timescale by SPEI, SSI and MSDI derived from
w2 GRACE. This figure shows the major drought timescale is 3-month suggested by all
«3 indices. It can be found from this figure that the longer timescale is considered, the
ws less likely a drought may occur. As an instance, for 24-month timescale, droughts are
»s detected for only few regions (e.g., in the Middle East and Africa). We also find that
us drought with longer timescales, e.g., 12-month droughts, can be detected from SSI in
w7 regions such asthe Middle East and Northern Africa, while this cannot be detected using
xs SPEI (compare Figure 11 top-right with middle-right). This is mainly attributed to the
1o longer memory of TWS (than net precipitation), which has led to extended hydrological
»s0 droughts in these regions. One can also see that the SSIs derived from GRACE are
s stronger than the SPEIs, showing that hydrological processes (and their trends) must
s> be considered in analyzing drought patterns, e.g., for monitoring agricultural droughts.
»s3 More frequent drought conditions are captured by the indices within Middle East, North
ssAmerica, and North West parts of Asia.

FIGURE 11

455 Wefurtherinvestigatethespatial variations of drought overeach basinsbymeasuring
sss the portion of grid points exhibiting droughts (for any timescale) to the number of grid

ss7 pointsin each basin. Thisis done for the period of 2002 t0 2016, from which time series of
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458

459

460

461

462

the drought area extent for 12 basins are plotted in Figures 12 and 13. From these results,
the estimates of SSI and MSDI that use GRACE data are closer compared to SPEI.
Larger areas can be found with drought conditions during 2003 and 2004 in the Ganges,
Niger, and Brahmaputra basins, 2014—2016 in the Colorado Euphrates, and South interior

mainly from the SSI and MSDI calculations. A considerable drought extent can be

3 observed for the Congo basin between 2006 and 2008. During 2012, considerable spatially

464

465

466

extended droughts are found in the Salado Atlantico, Niger, Nile+Red Sea neighbor, and
Congo basins. In the Colorado basin, while GRACE derived SPEI does not show any
major drought, both SSI and MSDI depict a strong anomaly, which can be explained

s7by limited rainfalls.
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FIGURE 12
FIGURE 13

We also calculate time series that reflect the evolution of the percentage of area in
each basin affected by different types of droughts. Linear trends are computed for these
spatial extents and are displayed in Figure 14. In this figure, drought trends of area
extent are estimated for different timescales of 3-, 6- and 12-month, using SPEI, SSI
from GRACE, and MSDI derived from GRACE data and net precipitation (P-E). The
results indicate that the estimated trends are positive in most of the basins, for example,
in the Middle East and the southern parts of Africa. Confirming the previous results,
Figure 14 indicates that the application of GRACE data in computing SSI and MSDI
reveal stronger drought patterns, which are distributed overlarger areas. Tocomplement
ourinvestigation, weinvestigate the extent of droughtsinthe Niger (Ferreiraetal.,2018),
Ganges and Brahmaputra (Khandu et al., 2016), Mississippi (Folger and Cody, 2015),
Danube (ICPDR, 2017), and Zambezi (Siderius et al., 2018) as investigated inprevious
studies. The results of area extent covered by the three drought indices are reportedin

Table 2, which indicate that precipitation deficit in the Niger and Danube basins and

sswater storage deficit in other basins are the main drivers of droughts in these regions.
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FIGURE 14

144.3. CCA Results to Explore Drought and Teleconnection Hot-spots
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In this section, CCA is applied to relate drought indices (SPEI, SSI, and MSDI
from GRACE and net precipitation) within the 156 basins of Figure 1 and the SST
averagein 31 windows (5°x5°) distributed over the oceans (Figure 4). In order to achieve
the best results, these windows are located in places where stronger correlation coefficients
between SST and the ENSO, NAO, and IOD indices can be found. Ateach grid point,
CCA establishes the connection between SST values of all windows on the one hand and
drought indices on the other hand. This connection appears as a set of weight values for
each SST window and each drought index. Therefore, after applying CCA, combinations
ofdroughtindices areachieved at each grid pointin awaythateach droughtindexisbeing
assigned a different weight. The average of computed weights for SPEI, SST and MSDI
are found to be 18%, 42%, and 40%, respectively. This shows that SSI and MSDI are
well related to SST data and has the largest impact in the drought combinations, which
can be related to the both effects of rainfall and shortage in water storage (derived from

GRACE data) in drought evolutions. The average extracted combinations of the drought

meindices in 12 selected basins of Figures 12 and 13 are shown in Figures 15 and 16.
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FIGURE 15

FIGURE 16

From Figures 15 and 16, multiple droughts are found within the 12 selected basins,
e.g., during 2012 over Mississippi and Colorado, 2012 over Salado Atlantico, Amazon,
and Euphrates, 2008 over Euphrates, South interior, and Mississippi. Despite some sim-
ilarities, some of these patterns have not been captured by individual indices. Besides,
CCA guarantees that the extracted droughts better describe SST variations related to
ocean-atmosphere phenomenaincluding ENSO, 10D, and NAO. We compare the perfor-

mance of the extracted drought by CCA to SPEI, SSI, and MSDI. Considering the 31

boxesin Figure 4, the estimated correlation coefficients between the droughtindices and

2



s the grid cell located in the ENSO, NAO, and IOD area are found to be higher than other
sio SST time series showing their dominant impact on net precipitation and TWS changes
si1 (seetheresultsin Table 3). Detailed correlation maps (between each drought index and
si2all the climate indicators) can be found in the Supplementary Material.

513 Considering the values of the correlation coefficients in Table 3, a stronger relation-
s ship is found between hydrological droughts and ENSO (maximum correlation coefficient
sis of 0.75 between MSDI and ENSO). Correlation coefficients of drought indices and other
sis climate indicators such as NAO and IOD are found to be moderate. A maximum corre-
17 lation coefficient of 0.67 (on average) is found between MSDI and ENSO, which shows
sis stronger agreement between indices and ENSO. These results indicate that ENSO is a
siv dominant climate mode with widespread influence, whereas IOD and NAO have more

swlocalized influence (see, e.g., van Dijk et al., 2013; Anyah et al., 2018).

TABLE 3

521 In Figure 17, annually averaged drought indices predicted by CCA are shown for the

5

N

> 156 basins (cf. Figure 1) covering 2004—2015. Negative values of [-3 -1] indicate strong

5

N

s relationships between SST changes and the evolution of droughts. The resultsindicate

+ that central to northern parts of Asia exhibit a drought condition in most of the years

5

N

s shown in Figure 17. Most parts of Australian continent experience droughts between
s6 2006 and 2011. Similar drought conditions are also found to be dominant within the

» north part of America, especially in the Mississippi basin during 2004 to 2007. The 2005

5

N

s drought over the Amazon basin is captured by the CCA results. During 2003—2012, the

s eastern parts of Africa (e.g., Nile basin) towards its southern parts are found to bedry,

N

so0in particular, in 2007, 2011, 2012, and 2014.

FIGURE 17
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s 5. Conclusion

532 Large scale drought events, which strongly influence global and regional water re-
s sources, can be determined using hydro-climate variables. In this study,traditional
s, univariate, as well as probabilistic multivariate drought indices are estimated by com-
;s bining monthly Terrestrial Water Storage (TWS) change data from GRACE, as well as
si  ERA-Interim’s soil moisture, precipitation, and evapotranspiration products. These in-
s dicesare estimated for the worlds’ 156 major river basins covering 2002—-2016, and they
s reflect both hydrological and meteorological evolutions within these basins. Different
s drought characteristics of trends, occurrences, areal extent, and frequencies for the 3-,
s0  0-,12-, and 24-month timescales are computed using these indices. We also applied
s«» Canonical Correlation Analysis (CCA) to understand relationships between the spatial
s2 and temporal evolution of the estimated hydrological droughts and the major large-scale

ss ocean-atmosphere interactions. In summary, we conclude that:

544 + The 3-month and 6-month drought timescale are found to be repeated more fre-
545 quently (than those of longer timescales), globally.

546 - In most of the basins, we observe an increase in magnitude, extent, and in some
547 cases, length of hydrological droughts, which could be due to, e.g., less precipitation
543 and more evapotranspiration beside excessive water usage.

549 + The Multivariate Standardized Drought Indices (MSDI) derived by combining
550 GRACE Terrestrial Water Storage (TWS) and net precipitation, as well as ERA-
551 Interim soil moisture and net precipitation are found to be better correlated to

552 global Sea Surface Temperature (SST) data compared to those drought indices de-

553 rived only from water storage data (Standardized Soil moisture (Storage) Index,
554 SSI) or from net precipitation (Standardized Precipitation Index, SPEI). Besides,
555 the combination of drought indices of SPEI, SSI, and MSDI estimated by CCA
556 indicates a strong connection to the major large-scale ocean-atmosphere phenom-
557 ena (e.g., El Nino Southern Oscillation, North Atlantic Ocean, and Indian Ocean
558 Dipole). Therefore, CCA might be a useful approach to predict global droughts,
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559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

while knowing the predicted state of SST or the ENSO and other teleconnection

indices.

- GRACE TWS data contain multi-year variations and trend, which are not well
presented in hydrological model simulations and re-analysis data. Therefore, using
GRACE data in producing SSI and MSDI better reflects hydro-climatological
characteristics of global river basins. However, one needs to be aware of unwanted
anomalies in GRACE fields such as those related to the surface deformation and
those due to earthquakes. A possible way to eliminate this problem can be achieved
through a careful assimilation of GRACE data into hydrological models, (e.g.,
Khaki et al., 2018b; Schumacher et al., 2018), which will be addressed in future

studies.

+ Uncertaintyininputdatacancauseanerrorinestimationoftheseverityofdroughts
and also introduces a phase shift. Basin-averaged drought indices derived from
GRACE TWS are found to be generally more certain than those estimated using

ERA-Interim data with a multiplicative error of 30%

+ CCA results reveal regional patterns of hydrological droughts, e.g., the northern
parts of Asia and most parts of Australian continent between 2006 and 2011, which
are found to be strongly correlated with the ENSO and the Indian Ocean Dipole
(IOD) climate variabilities. Correlation coefficients between drought indices and

the North Atlantic Oscillation are found to be moderate.

s Overall, we conclude that the application of CCA on different hydrological indices (de-

580

581

582

583

rived by combining data from different satellite missions) and SST data permits the

identification of regions where the interactions between hydrological droughts and tele-

connection are strong. This is investigated here for the period of 2003—2016. In the

future, this type of analysis by hydrological indices would be completed with new and

=« updated satellite data, in particular the ones provided by the geodetic mission GRACE

585

Follow-On launched in 2018.
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Figure 1: The world’s 156 major river basins according to the Global Runoff Data Center. Identification
number of each river basin is reflected in the colorbar. 1 : Magdalena + neighbor; 2 : Orinoco + coastal
neighbor; 3 : Atlantic North Coast; 4 : Pacific Coast - West Amazon; 5 : Amazon; 6 : Tocantins +
coasts; 7 : Paranaiba-Atlantico Nordeste; 8 : Sao Francisco-Atlantico Leste; 9 : Pacific Coast - West
Parana; 10 : Parana; 11 : East Parana; 12 : Salado Atlantico; 13 : Southern Pacific Coast; 14 : Salado
Pampa + Dulce; 15 : Chubut; 16 : Western Mediterranean Coast; 17 : Eastern Mediterranean Coast;
18 : North West Coast; 19 : North West Interior; 20 : North East Interior; 21 : Gambia - West Coast;
22 : Senegal; 23 : Volta - West Coast; 24 : Niger; 25 : Lake Chad - Central Interior; 26 : Nile + Red Sea
neighbor; 27 : Ogooue - Central West Coast; 28 : Congo; 29 : Rift Valley; 30 : North East Coast; 31 :
Jubba; 32 : Rufiji - Central East Coast; 33 : Cuanza - South West Coast; 34 : Okavango; 35 : Zambezi;
36 : Limpopo - South East Coast; 37 : Madagascar; 38 : South West Coast; 39 : Orange; 40 : South
Atlantic Coast; 41 : North Yukon; 42 : Yukon; 43 : South Yukon; 44 : Mackenzie; 45 : North Mackenzie
+ islands; 46 : West Greenland Islands; 47 : North Fraser; 48 : Fraser and neighbors; 49 : Churchill
and neighbors; 50 : Nelson; 51 : Ouest Hudson; 52 : South Hudson; 53 : Labrador - Hudson Coast; 54 :
Labrador - Atlantic Coast; 55 : Saint Lawrence; 56 : Columbia; 57 : West Coast - South Columbia; 58 :
Internal Basins; 59 : Colorado; 60 : Mississippi; 61 : Northern East Coast; 62 : Central East Coast; 63
: Southern East Coast; 64 : Brazos + Colorado; 65 : Rio Grande; 66 : North Western Latin America;
67 : Northern Latin America; 68 : Southern Latin America; 69 : Cuba - Saint Domingue; 70 : Ob; 71
: Taz + North and East Ob; 72 : Yenisey; 73 : Pasina + Taimyra; 74 : Chatanga; 75 : Olenek; 76 :
Lena; 77 : Jana; 78 : Indigirka + neighbor; 79 : Kolyma; 80 : South Kolyma; 81 : Anadyr + Ponzina;
82 : Kamchatka; 83 : Amur; 84 : Amu and Syr Darya; 85 : Turgaj - Interior; 86 : Tes-Chem - Interior;
87 : Tarim + neighbor; 88 : Est Tarim - Interior; 89 : Tiberan plateau; 9o : Interior Loess plateau;
o1 : Kerulen; 92 : Liao + Hai; 93 : Yalu; 94 : Japan; 95 : Huanghe - Yellow; 96 : Heihe + coastal
neighbor; 97 : Indus; 98 : Western India; 99 : Southern India; 100 : Krishna + coastal neighbor; 101 :
Godavari; 102 : Mahanadi + Neighbors; 103 : Ganges; 104 : Brahmaputra; 105 : Irrawaddy + neighbor;
106 : Salween + neighbor; 107 : Mekong + coastal; 108 : Xi + neighbor; 109 : Yangtze + coast; 110 :
Malaysia; 111 : Sumatra; 112 : Borneo; 113 : Philippines; 114 : Java; 115 : Sulawesi; 116 : Papua; 117
: Iceland; 118 : Barents Sea; 119 : Northern Divina + neighbor; 120 : Pechora; 121 : Norge Sea; 122
: West Baltic Sea; 123 : East Baltic Sea; 124 : Neva + Southern Baltic Sea; 125 : Great Britain and
Ireland; 126 : Loire + Seine + Garonne; 127 : Rhine + Elbe + Weser; 128 : Danube; 129 : Dniepr +
Don + Dniestr; 130 : Kuban + neighbor; 131 : Volga; 132 : Ural + Northern Caspian Sea; 133 : Kura
+ West Caspian Sea; 134 : East Caspian Sea; 135 : Espagne; 136 : Rhone + Italie; 137 : Balkans; 138 :
Turquie; 139 : Euphrates; 140 : South Caspian interior; 141 : Near East + Sinai; 142 : North interior;
143 : South interior; 144 : Red Sea - North; 145 : Red Sea - South; 146 : East Arabic; 147 : North
Arabic; 148 : Coastal Iran; 149 : Ouest; 150 : Interior and South; 151 : Timor Sea; 152 : Lake Eyre;
153 : Murray; 154 : East coast; 155 : New Zealand; 156 : Tasmania.
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Figure 2: Overview of basin averaged GRACE TWS for 156 basins of Figure 1. (Top) Standard deviation
of basin averaged GRACE TWS covering 2003—2016 showing the strength of signal. (Middle) Standard
deviation of the TWS errors. (Bottom) Noise to error ration computed by dividing the top plot by the
middle one.
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Figure 3: Time series of W3RA TWS covering 1980—2013, which is fitted to that of GRACE using the
common period of 2003—2013. The extended time series of 1980—2017 are used for computing drought
indices, where (top) corresponds to the Ganges River Basin, and (bottom) is related to the Nile River
Basin. Errors are propagated by considering the basin average errors of Figure 2 (Middle).
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Figure 4: Locations of 5°y5° boxes, where their SST data are used to estimate CCA and relate SST
records to drought indices. 10 boxes are chosen in the regions, where ENSO, IOD, and NAO are usually
measured and the rest (21 boxes) are distributed to cover the global oceanic basins.
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Figure 5: Global SPEI, SSI, and MSDI estimated for the 156 basins of Figure 1. The basin averaged
drought indices derived for January to December 2008 are temporally averaged. Individual maps for
each drought index covering 2004—2015 can be found in supplementary information.
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Figure 6: Correlation coefficient maps derived between drought indices over the 156 basins of Figure 1

covering 2002—2016.
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Figure 7: Average trends ([]/year) maps of SPEI, SSI and MSDI derived from GRACE for every basin
during the study period (2002—2016).
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Figure 8: Drought indices computed for eight selected basins (Mississippi, Colorado, Amazon, Niger,
Lake Chad, Congo, Nile, and Salado Atlantico) covering 2003—2016. Locations of the basins are shown
in Figure 1. Error-bars are not shown to enhance visual comparisons. Y-axes represent the degree of
dryness and wetness thus they are unit-less.
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Figure 9: Drought indices computed for three selected basins within Asia (Ganges, Brahmaputra, and
Euphrates) covering 2003—2016 and corresponding groundwater and soil moisture variations time series.
Locations of the basins are shown in Figure 1. Error-bars are not shown to enhance visual comparisons.
Y-axes of the plots on left represent the degree of dryness and wetness thus they are unit-less.
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Figure 10: Drought indices and their errors computed for the Amazon (left) and Ganges (right) basins
covering 2003—2016. Locations of the basins are shown in Figure 1 and y-axes represent the degree of

dryness and wetness thus they are unit-less.
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Figure 11: Basin averaged frequency (month/year) of detected droughts in different timescales for each
timescale by SPEI, SSI, and MSDI.
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Figure 12: Time series of the areal extent of droughts within 6 arbitrary basins (Amazon, Salado
Atlantico, Niger, Lake Chad - Central interior, Nile+Red Sea neighbor, and Congo). The extents are
computed while considering SPEI, SSI, and MSDI in these basins. Error-bars are not shown to
enhance visual comparisons.
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Figure 13: Similar to Figure 12 but for other 6 basins (Colorado, Mississippi, Ganges, Brahmaputra,
Euphrates, and South interior). Error-bars are not shown to enhance visual comparisons.
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Figure 14: Areal extents of trends derived from the SPEI, SSI, and MSDI derived for the 156 basins of
Figure 1, and at different timescales. Note that no significant trend is found for the drought of 24-month
time. Error-bars are not shown to enhance visual comparisons. The color-bar represents linear rate of
the degree of dryness and wetness ([ ]/year).
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Figure 15: Extracted combinations of drought indices from the CCA, which correspond to 6 arbitrary
basins (Amazon, Salado Atlantico, Niger, Lake Chad - Central interior, Nile+Red Sea neighbor, and
Congo) and their linear trends. Black dashed lines represent the ‘-0.9’ threshold value. Error-bars are
not shown to enhance visual comparisons and y-axes represent the degree of dryness and wetness thus
they are unit-less.

51



Colorado

2002

2004 2006 2008 2010 2012 2014 2016

2004 2006 2008 2010 2012 2014 2016

Euphrates

2002

2004 2006 2008 2010 2012 2014 2016

Mississippi

2004

2002

2006 2008 2010 2012

Brahmaputra

2016

2

o

20 i

2002 2004 2006 2008 2010 2012 2014 2016
South interior

2+ 4

2004

2002

2006 2008 2010 2012

2014

2016

Figure 16: Similar to Figure 15 but for 6 other river basins (Colorado, Mississippi, Ganges, Brahmaputra,
Euphrates, and South interior). Error-bars are not shown to enhance the visual comparisons and y-axes
represent the degree of dryness and wetness thus they are unit-less.
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Figure 17: Detected hot spots between 2004 and 2015 based on the CCA results. Each global map
indicates a combination of drought indices (SSI, SPEI and MSDI) predicted by the CCA. The annual
averages are shown here.
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Table 1: A summary of the datasets used in this study.

Description Source Acronym Data access
Terrestrial water storage GRACE TWS http://www2.csr.utexas.edu/grace/
Level 2
Precipitation ERA- P http://apps.ecmwf.int/datasets/data/
Interim interim-full-daily/
Evapotranspiration ERA- E http://apps.ecmwf.int/datasets/data/
Interim interim-full-daily/
Vertical summation of the total column soil ERA- Sm http://apps.ecmwf.int/datasets/data/
moisture Interim interim-full-daily/
Optimum Interpolation Sea Surface Temper- ~ AVHRR- SST ftp://eclipse.ncdc.noaa.gov/pub/0I-daily-v2
ature OISST
El Nifio Southern Oscillation Index NOAA ENSO www.ncdc.noaa.gov/teleconnections/enso/
North Atlantic Oscillation Index NOAA NAO www.ncdc.noaa.gov/teleconnections/nao/
Indian Ocean Dipole Index NASA 10D http://gcmd.nasa.gov/records/GCMD Indian

Ocean Dipole.html
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Table 2: A summary of average extent areas within the drought-affected regions for sample basins with
specific drought periods.

Areal Extent (%)
Basin Drought Period SPEI SSI MSDI
Niger 2006—2008 (Ferreira et al., 2018) 83 51 64
Ganges 2010 (Khandu et al., 2016) 29 58 77
Brahmaputra 2005 (Khandu et al., 2016) 33 45 51
Mississippi 2012—2013 (Folger and Cody, 2015) 52 76 61
Danube 2013 (ICPDR, 2017) 71 59 86
Zambezi 2015-2016 (Siderius et al., 2018) 56 35 68
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Table 3: A summary of the average and maximum correlations between estimated drought indices
(using GRACE and the ERA-Interim’s soil moisture data separately) and three major large-scale ocean-
atmosphere interactions of ENSO, NAO, and IOD.

NAO ENSO 10D
Drought Index Mean Max Mean Max Mean Max
SPEI 0.39 0.54 0.57 0.68 0.51 0.62
=
5 MSDI 0.41 0.51 0.67 0.75 043  0.72
O
>
= SSI 0.39 0.44 0.64 0.70 0.53 0.64
=
g
= MSDI 0.37 0.63 0.60 0.65 0.35 0.53
=
E SSI 0.35 0.48 0.54 0.73 0.40 0.64
Combination 0.42 0.66 0.78 0.85 0.57 0.79
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