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Abstract 
 

1     Droughts often evolve gradually and cover large areas, and therefore, affect many peo- 

2    ple and activities. This motivates developing techniques to integrate different satellite 

3    observations, to cover large areas, and understand spatial and temporal variability of 

4     droughts.  In this study, we apply probabilistic techniques to generate satellite derived 

5   meteorological, hydrological, and hydro-meteorological drought indices for the world’s 

6   156 major river basins covering 2003–2016. The data includes Terrestrial Water Storage 

7     (TWS) estimates from the Gravity Recovery And Climate Experiment (GRACE) mis- 

8  sion, along with soil moisture, precipitation, and evapotranspiration reanalysis. Different 

9      drought characteristics of trends, occurrences, areal-extent, and frequencies correspond- 

10     ing to 3-, 6-, 12-, and 24-month timescales are extracted from these indices.  Drought 

11     evolution within selected basins of Africa, America, and Asia is interpreted. Canonical 

12    Correlation Analysis (CCA) is then applied to find the relationship between global hydro- 

13 meteorological droughts and satellite derived Sea Surface Temperature (SST) changes. 

14   This relationship is then used to extract regions, where droughts and teleconnections are 
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15    strongly interrelated. Our numerical results indicate that the 3- to 6-month hydrologi- 

16    cal droughts occur more frequently than the other timescales. Longer memory of water 

17     storage changes (than water fluxes) has found to be the reason of detecting extended 

18    hydrological droughts in regions such as the Middle East and Northern Africa. Through 

19        CCA, we show that the El Niño Southern Oscillation (ENSO) has major impact on the 

20    magnitude and evolution of hydrological droughts in regions such as the northern parts 

21     of Asia and most parts of the Australian continent between 2006 and 2011, as well as 

22     droughts in the Amazon basin, South Asia,  and North Africa between 2010 and 2012. 

23     The Indian ocean Dipole (IOD) and North Atlantic Oscillation (NAO) are found to have 

24 regional influence on the evolution of hydrological droughts. 

Keywords: GRACE Terrestrial Water Storage (TWS), Global Droughts, Canonical 

Correlation Analysis (CCA), Sea Surface Temperature (SST), Teleconnections, Drought 

Hot Spots 

 

25 1. Introduction 
 

26 The global hydrological (water) cycle has been under influence of both climate change 

27    and anthropogenic modifications (Tiwari et al., 2009; Zhao et al., 2015). A study by Feng 

28 and Zhang (2015) suggests that the ongoing global warming could lead to considerable 

29    declines in soil water due to a lack of snow melt water recharge to the soil during spring 

30  and summer. Increasing the temperature and less water stored in the surface soil moisture 

31   might lead to a reduction of precipitation in semi-arid regions. Therefore, the possibility 

32 of increasing drought events can be expected in future. 

33 In general, droughts have been categorized into the groups of meteorological or clima- 

34   tological, hydrological, agricultural, and socioeconomic, among which the first two types 

35    are of interest in this study (find a critical discussion in Van Loon (2015)). Since drought 

36   is a complex phenomenon, there is no universal definition for it (Mishra and Singh, 2010). 

37     Often, the term ‘meteorological drought’ is understood as the shortage in catchment’s 

38   water fluxes, i.e., precipitation or net precipitation, i.e. precipitation minus evapotranspi- 

39    ration. The term ‘hydrological drought’ is associated with the shortfalls of water storage, 

40  as well as (net) precipitations at the same time. Standardized Precipitation Index (SPI, 
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41   McKee et al., 1993; Guttman, 1999) and Standardized Precipitation-Evapotranspiration 

42    Index (SPEI, Vicente-Serrano et al., 2010) are often used to represent meteorological 

43     droughts.  Water storage changes are derived by analyzing soil moisture (and in some 

44     cases groundwater) data and used to produce Standardized Soil (Storage) Index (SSI, 

45     Mishra and Singh, 2010).  In a practical sense, hydro-meteorological droughts may be 

46      quantified by relating SPI or SPEI and SSI or by merging variables that are used to 

47        define these indices1 (see e.g., Hao and AghaKouchak, 2013; Carrlão et al., 2016). 

48 Meteorological and hydrological droughts are inter-related through interactions that 

49      happen within the water cycle (Van  Loon and Laaha, 2015).  Generally speaking,  any 

50    higher than normal net evaporation rates over the oceans can change precipitation rates 

51   on land increasing continental water storage (Mueller et al., 2012). In contrast, a shortage 

52     in precipitation over land, along with a higher evaporation caused by a meteorological 

53     drought may lead to shortage in continental water storage and cause a hydrological 

54     drought (e.g., Wilhite, 2000; Tallaksen et al., 2004).  Examples of prolonged meteoro- 

55    logical drought conditions leading to hydrological droughts are discussed by, e.g., Trigo 

56      et al. (2010); van Dijk et al. (2013); Van Loon (2015); Forootan et al. (2017) and Schu- 

57    macher et al. (2018).  Index-based drought monitoring systems are often adopted for 

58    operational purpose. Examples include the SPEI (e.g., Beguer ı́a et al., 2010) used by the 

59   European commission2 or temperature-precipitation indices by the US’s Global Drought 

60     Information System3.  The Global Integrated Drought Monitoring and Prediction Sys- 

61    tem (GIDMaPS) from the University of California Irvine4 is an experimental system that 

62     combines various satellite data and climate re-analysis datasets to compute univariate 

63   and multivariate drought indices (see other examples in, e.g., Ahmadalipour et al., 2017). 

64   Scientists also base their drought analyses and projections on model simulations, see e.g., 

65    Samaniego et al. (2018). A combination of data assimilation and probabilistic forecast- 

66     ing techniques is used in Yan et al. (2017) to generate more realistic seasonal drought 

67 forecasts for the USA. 

 
1http://spei.csic.es/home.html 
2http://edo.jrc.ec.europa.eu/gdo/php/index.php?id=2001 
3www.drought.gov/gdm/ 

4http://drought.eng.uci.edu/ 
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68 Since the launch of the Gravity Recovery And Climate Experiment (GRACE, Tapley 

69   et al., 2004) satellite gravity mission in 2002, drought monitoring studies have been using 

70   its estimates of Terrestrial Water Storage (TWS, a vertical integration of surface water, 

71    soil moisture, groundwater, and biomass water content) changes to understand global 

72    and regional hydrological processes (Chen et al., 2009; Rodell et al., 2009; Frappart et 

73     al., 2012; Houborg et al., 2012; Li et al., 2012; Mueller et al., 2012; Long et al., 2013; 

74  Thomas et al., 2014; Khaki et al., 2017). For example, Yirdaw et al. (2008) investigated 

75   2002–2003 droughts in the Saskatchewan River basin. In the Murray Darling basin, the 

76      hydrological drought of 2002–2006 was found to be related to the meteorological drought 

77     that was continued from 2000 (Leblanc et al., 2009; Forootan et al., 2012).  Various 

78    studies have demonstrated the connection between the long-term trends or changes in 

79     the amplitude of seasonal (net) precipitation and TWS (e.g., Zeng, 1999; Seoane et al., 

80     2013; Koster et al., 2000; Strassberg et al., 2007).  Khandu et al. (2016); Forootan et 

81     al. (2017) and Schumacher et al. (2018), for example, showed that both climate change 

82     and anthropogenic contribute to the water storage decline (mainly in groundwater) in 

83      South Asia, the Middle East, and Australia, respectively.  Other studies indicate that a 

84    persistent decrease in seasonal precipitation leads to a decline in TWS (e.g., Voss et al., 

85     2013; Forootan et al., 2014, 2016).  Hirschi et al. (2006) studied this effect for 37 mid- 

86 latitude river basins in Europe, Asia, North America, and Australia, and drew a similar 

87     conclusion. Examples of the application of GRACE data for assessing global water 

88   storage trends, seasonal and sub-seasonal variability and extreme events are provided in, 

89    e.g., Forootan and Kusche (2012); van Dijk et al. (2014); Eicker et al. (2016); Humphrey 

90 et al. (2016); and Kusche et al. (2016). 

91 GRACE has been used to study hydrological droughts (e.g., Houborg et al., 2012; 

92      Sinha et al., 2007).  For  example,  Zhao et al. (2017) developed a new monthly  global 

93      Drought Severity Index (DSI) based on GRACE TWS and showed that it performs 

94    comparably to other commonly used drought metrics. In the USA’s drought monitoring 

95      system5,  GRACE is used for monitoring  groundwater droughts. In regional studies, 
 
 

5https://grace.jpl.nasa.gov/applications/drought-monitoring/ 

https://grace.jpl.nasa.gov/applications/drought-monitoring/
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96     Yirdaw et al. (2008) and Awange et al. (2016b) applied the Total Storage Deficit Index 

97     (TSDI) proposed by Narasimhan and Srinivasan (2005) using GRACE TWS estimates. 

98     Most of these existing studies (e.g., Thomas et al., 2014; Zhao et al., 2015; Awange 

99      et al., 2016b; Khandu et al., 2016; Zhang et al., 2016) have applied GRACE TWS to 

100     describe the progress of hydrological droughts.  It has also been shown that GRACE 

101   derived drought indices6 combining with other satellite products can better characterize 

102     droughts (e.g., Australia’s Millennium Drought in van Dijk et al., 2013; Zhao et al., 

103      2017, see also).  A recent global study by Sun et al. (2017) indicates that GRACE along 

104     with satellite derived precipitation data can be used to identify extreme hydrological 

105   events, although the study concludes that the length of GRACE data and its low spatial 

106    resolution represents a limitation in extracting return periods of extreme events (find a 

107 detailed investigation in Kusche et al., 2016). 

108 This study adds to previous research by exploring the relationship between hydro- 

109       meteorological droughts and major ocean-atmosphere ‘teleconnections’. For this, univari- 

110 ate (i.e., hydrological and meteorological), as well as multivariate (i.e., hydro-meteorological) 

111    drought indices are computed for the world’s 156 major river basins that are defined by 

112      the Global Runoff Data Center7, and see Figure 1). SPEI and SSI are computed to as- 

113    sess the separate impact of (net) precipitation and water storage changes on the drought 

114      evolutions, respectively.  We  also combine the SPEI and SSI  in (a probabilistic way) 

115    and develop a Multivariate Standardized Drought Index (MSDI) for each basin, which 

116   reflect hydro-meteorological drought evolutions (see also Hao and AghaKouchak, 2013; 

117 AghaKouchak, 2014; Rajsekhar et al., 2015). 

118 To generate drought indices of this study, long-term precipitation and evapotranspi- 

119     ration data from ERA-Interim (1980–2016, Dee et al., 2011), and TWS from GRACE 

120    (2003–2016) are used. We extend the GRACE TWS estimates backwards to 1980 using 

121    the water state outputs of W3RA (1980–2012) provided by Schellekens et al. (2017). This 

122     extension (i) ensures a better representation of hydrological characteristics of river basins, 

123     and (ii) it also mitigates the possible errors in estimating probability density functions 
 
 

6www.ess.uci.edu/~velicogna/drought_data.php 

7www.fao.org/nr/water/aquastat/irrigationmap/index.stm 

http://www.ess.uci.edu/~velicogna/drought_data.php
http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm
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124    that are required to be computed while estimating the desired drought indices. A Monte 

125  Carlo approach is applied to estimate the impact of uncertainties of input data and the 

126 applied extension backward to 1980 on the estimation of drought indices. 

127 The impact of using GRACE TWS on the estimation of drought indices is compared 

128   with alternative indices computed using soil moisture data from ERA-Interim reanalysis. 

129     The differences between these indices reflect the contribution of other water compart- 

130    ments (e.g., groundwater and surface water storage) in the evolution of drought indices. 

131     Besides, GRACE TWS estimates contain trends, seasonal, and inter-annual variability, 

132   which better reflect the impact of climate change and anthropogenic modifications (than 

133     land surface models) in the basin scale (also see e.g., Scanlon et al., 2018; Schumacher 

134      et al., 2018).   Therefore, analyzing GRACE derived drought indices helps us to better 

135 understand these interactions. 

136 In order to represent spatio-temporal evolution of droughts, we interpret the com- 

137      puted SPEI, SSI, and MSDI of selected basins in the Americas, Africa, Asia, and 

138   Australia. Using the computed indices, different drought characteristics such as severity, 

139   extent, and frequencies correspond to the 3-, 6-, 12-, and 24- month timescales (suggested 

140    by Mpelasoka et al., 2017) are investigated. Canonical Correlation Analysis (CCA, Borga 

141     et al., 1998) is applied to relate the computed drought indices with global Sea  Surface 

142 Temperature (SST, Reynolds et al., 2007) change. This is done for the period of 2003– 

143    2016, from which we derive hot spots, where teleconnections appear strongly related to 

144    droughts. This investigation, therefore, extends previous efforts that study the relation- 

145        ships between teleconnections and water storage changes (e.g., Garćia-Garćia et al., 2011; 

146     Philips et al., 2012; Anyah et al., 2018; Eicker et al., 2016; Forootan et al., 2018; Ni et 

147 al., 2018). 

148 In summary, this study has three major contributions: (A) it provides new insights 

149     about global scale drought evolution while focusing on the values water storage esti- 

150     mations derived from GRACE, (B) it evaluates and discusses the properties of global 

151    hydrological droughts during 2003–2016 and their uncertainties, and finally (C) it ex- 

152     plores relationships between ocean-atmosphere teleconnections and hydro-meteorological 

153 droughts over multiple regions. 
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FIGURE 1 
 

 

154 2. Data 
 

155 2.1. Terrestrial Water Storage Estimates from GRACE 
 

156 GRACE Level 2 (L2) products consist of monthly gravity field solutions. The latest 

157    release of L2 data (RL06) covering January 2003 to December 2015 truncated at spher- 

158    ical harmonic degree and order 90 are downloaded from the Center for Space Research 

159    (CSR)8. These residual coefficients represent mainly water mass changes on continents 

160   (Ramillien et al., 2005). Degree 1 coefficients are replaced with those estimated by Swen- 

161     son et al. (2008) to account for the movement of the Earth’s center of mass.  Degree 2 

162    and order 0 coefficients are replaced by those from Satellite Laser Ranging (SLR), which 

163     are more stable than those of GRACE (e.g., Chen et al., 2007). Anomalies due to the 

164    Glacial Isostatic Adjustment (GIA) are reduced using the output of the model provided 

165     by Geruo et al. (2013). Correlated noise in L2 products is reduced by applying the DDK2 

166    anisotropic filter (Kusche et al., 2009). The smoothed fields are then converted to TWS 

167     changes following Wahr et al. (1998). Basin average values for the 156 river basins of 

168      Figure 1 and their errors are estimated following (e.g., Khaki et al., 2018a).  Our com- 

169    putations cover the complete mission period of 2003–2016, where Figure 2 shows the 

170    standard deviations of basin averaged GRACE TWS, their errors, and the signal to noise 

171   ratio within each basin of Figure 1. During 2003–2016, the computed basin averaged time 

172    series are temporally interpolated (using a harmonic interpolation). This is also applied 

173    to other data sets, thus, all available data records have been synchronized. Besides, since 

174     other data sets have a spatial resolution different than that of GRACE L2 data, they are 

175    converted to the spectral domain and truncated at spherical harmonic degree and order 

176 90 and basin averages are computed following Khaki et al. (2018a). 
 

 

FIGURE 2 

 
8http://www2.csr.utexas.edu/grace/ 

http://www2.csr.utexas.edu/grace/
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177 2.2. Global Soil Moisture, Precipitation, and Evapotranspiration Products 

178 ERA-Interim is a global atmospheric reanalysis produced by the European Center for 

179      Medium Range Weather Forecast (ECMWF, Dee et al., 2011).  The reanalysis  delivers 

180    several key land surface parameters such as soil moisture, vegetation, and snow, among 

181    others by combining various global observational datasets using an integrated forecast 

182   model. In this study, monthly soil moisture data from four volumetric layers are obtained 

183     from 6 hourly 0.25◦×0.25◦ soil moisture data9. To account for meteorological changes, 

184   global precipitation and evapotranspiration data are used from the provided link and the 

185 vertical layers are summed up. 

186 The ERA-Interim data, used in this study, cover the period of 1980–2016. Possible 

187     lateral water storage flow has not been explicitly considered in the ERA-Interim’s soil 

188   moisture simulations, which might affect drought indices derived from soil moisture by 

189     incorporating higher/lower flow in some cases such as winter and after snow melt. To 

190    mitigate the inconsistencies between the above data, and improve the accuracy of water 

191     storage and water flux estimations, all above data (GRACE TWS, ERA-Interim’s soil 

192     moisture, precipitation, and evapotranspiration) are spatially averaged within the 156 

193       river  basins  of Figure 1. It is worth mentioning that the rate of change in TWS is 

194     related to the net precipitation through the water balance equation.  However, it has 

195     been shown that GRACE TWS contains long memory of hydrological processes, while 

196       fluxes such as precipitation and evapotranspiration introduce water variation with shorter 

197      wavelength (e.g., Rakovec et al., 2016; Forootan et al., 2017). Therefore, combining 

198     GRACE TWS and net precipitation data (see Section 3.2) seems to be suitable to explore 

199 hydro-meteorological drought characteristics (see, e.g., Sun et al., 2017). 

 

200 2.3. Sea Surface Temperature Data 

201 The Version 2 of the daily Optimum Interpolation Sea Surface Temperature (OISST) 

202   data with 0.25◦×0.25◦ spatial resolution between 2002 and 2016 are used. Infrared satel- 

203 lite data from the Advanced Very High Resolution Radiometer (AVHRR), in situ obser- 

204   vations (International Comprehensive Ocean Atmosphere Dataset, Worley et al., 2005), 
 
 

9http://apps.ecmwf.int/datasets/data/interim-full-daily/ 

http://apps.ecmwf.int/datasets/data/interim-full-daily/
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205 and proxies computed from sea ice concentrations are used to generate the OISST v2 
 

206 (Reynolds et al., 2007). 

  

TABLE 1 

 

 

207 

 

3. Method 

 

 

208 3.1. Extending GRACE TWS Time Series Backwards to 1980 
 

209 Extreme events, such as droughts, are often characterized by their duration, mag- 

210     nitude (or intensity), extent, and return period.  A reliable estimation of these char- 

211    acteristics requires time series that are long enough and are also well representative of 

212     hydro-meteorological characteristics of the regions of interest (Cancelliere and Salas , 

213  2004). However, a limitation of GRACE data in drought monitoring applications is the 

214     mission’s limited operational time, i.e.  2002–2017.  To  mitigate this problem, we use 

215     TWS simulation of ten global models that are published by Schellekens et al. (2017) 

216    covering 1979–2012. From these, the W3RA model (van Dijk., 2010) is applied to extend 

217     GRACE TWS in the 156 river basins of Figure 1, and TWS of other nine models is used 

218     to estimate uncertainties using the collocation approach of Awange et al. (2016a).  It 

219     is worth mentioning that using simulated TWS data, even after applying the following 

220    corrections, is not a perfect choice and the estimated drought indices might be still over- 

221    /under-estimated. However, this impact if far smaller than using short length data sets 

222 to compute drought indices. 

223 To extend the TWS estimates backward to 1980, a scale factor and a bias (vertical 

224 shift) are estimated to match the long-term W3RA TWS to that of GRACE as 
 
 

XW 3RA  = a−1 ∗ XGRACE − b, (1) 
 
 

225   using the common data of 2003–2013. This means that following Scanlon et al. (2018)’s 

226    conclusion, the basin-averaged GRACE derived TWS estimates are assumed to be more 

227   realistic than model simulations, in terms of trends, as well as seasonal and inter-annual 

228     variations.  Therefore, in Eq.  (1), we consider a ∗ XW 3RA for the period of 1980–2013 
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229     and extend GRACE data backward. In is worth mentioning that here the bias between 

230     W3RA and GRACE is assumed to be temporally invariant, which is not a sophisticated 

231    assumption. Applying a time-variable bias correction, however, requires a careful extra 

232     research and is out of scope of this study. Errors of the extension in Eq. (1) is computed 

233   using a least squares error propagation Koch (1998), while considering the error fields of 

234    Figure 2 (Middle). Examples of the original W3RA TWS and the extended time series in 

235     the Ganges and Nile River basins are shown in Figure 3. The extended TWS time series 

236 of 1980–2016 are used to compute hydrological indices as described in what follows. 
 

 

FIGURE 3 

 

237 3.2. Multivariate Standardized Drought Index 
 

238 Three different drought indices of Standardized Precipitation-Evapotranspiration In- 

239  dex (SPEI), Standardized Soil moisture (Storage) Index (SSI), and Multivariate Stan- 

240    dardized Drought Index (MSDI) are estimated to represent different types of droughts. 

241   SPEI is computed similar to Vicente-Serrano et al. (2010), which is similar to the SPI 

242      in McKee et al. (1993).  In this approach, wet or dry condition are estimated based on 

243   the frequency distribution of variables (here net precipitations) on a variety of timescales 

244    from sub-seasonal to inter-annual scales. To compute SPEI, we first fit a gamma prob- 

245   ability density function to the observed net precipitation (1980–2013) and compute their 

246 cumulative distribution. Then, these are transformed to standard normal distributions 

247     following (Wu et al., 2001). The transformed probability varies between +3.0 and -3.0 

248    (Edwards et al., 1997), which indicates the level of wetness and dryness, respectively. 

249      In this study, SSIs are computed similar to SPEIs,  but soil moisture data from ERA- 

250 Interim or GRACE TWS estimates are used as inputs. 

251 Generating MSDI follows a statistical approach that allows us to simultaneously 

252     incorporate the information of SPEI and SSI. Thus, the temporal averaging of the 

253      three drought indices used in this study is treated consistently.   For each two types of 

254  samples (X and Y ), the cumulative joint probability density function (Pr) is expressed 
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255 as 
 

 

Pr(X ≤ x, Y  ≤ y) = C(F (X), F (Y )) = q, (2) 

256      where C is a copula, and F (X) and F (Y ) are the marginal cumulative distribution 

257    functions, and finally q is the cumulative joint probability value (Hao and AghaKouchak, 

258     2013).  In Eq.  (2), time series of net precipitation and soil moisture or TWS changes 

259      can replace the random variables of X and Y . We  use Frank  copula to model  the 

260     joint distribution in Eq. (2). Following Hao and AghaKouchak (2013), MSDI can be 

261 computed as 
 

 

M = Φ−1(q), (3) 
 

262  where Φ is the standard normal distribution function, which is computed here empirically. 

263    In all the above drought indices, the negative index represents that the climate condition 

264    is dry (drought), while a positive index indicates a wet climate condition (AghaKouchak, 

265 2014). 

 
266 Uncertainty of the Computed Drought Indices: 

 

267 To  account for the uncertainty of input data,  while estimating drought indices,  a 

268     Monte Carlo approach is implemented. For this, we generate samples of soil moisture, 

269    TWS, and net precipitation data from a random distribution N(µ, σ), where µ represents 

270     the mean values derived by processing the input data in Section 2, and σ of TWS and 

271     soil moisture is derived from the results of Figure 2 (Middle).   For basin averaged net 

272   precipitation, we consider a multiplicative error of 30% (Tian et al., 2013). To estimate 

273    the uncertainty of drought indices, we generate 1000 samples of TWS and net precipita- 

274   tion time series. As a result, 1000 sets of respective drought indices are computed, whose 

275    median and range are used to interpret the severity of droughts and their uncertainties, 

276 respectively. 
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xx 

277 Types of Drought Indices Estimated in this Study: 
 

278 As mentioned, for each river basin of Figure 1, the SPEI is calculated using net 

279    precipitation from ERA-Interim data, while SSISm is based on ERA-Interim’s soil mois- 

280      ture data that largely represent agricultural droughts, and SSIT W S  is computed using 

281   GRACE TWS data. In a probabilistic manner (Eq. (3)), MSDISm is estimated by simul- 

282   taneously using ERA-Interim soil moisture and net precipitation from ERA-Interim. Fi- 

283      nally, MSDIT W S is derived by combining GRACE TWS and net precipitation data from 

284   ERA-Interim. Therefore, our estimate MSDIs will likely represent hydro-meteorological 

285 droughts. 
 

286 3.3. Extracting Drought Characteristics in Different Timescales 
 

287 To better analyze drought characteristics using the various drought indices, different 

288    timescales are considered. Averaging periods of 3-, 6-, 12- and 24-month are used here 

289      to  extract persistent patterns. These timescales are generally relevant  to a range  of 

290     agricultural and hydrological systems and facilitate a better interpretation of  drought 

291      events  (Mpelasoka et al., 2017).   For  any  of these timescales,  a drought event begins 

292     when the drought indices are continuously less than -0.9 for at least 3 months (dry 

293 condition threshold suggested by Mpelasoka et al., 2017). 
 

294 3.4. Canonical Correlation Analysis (CCA) 
 

295 CCA seeks to find the linear relationship between two sets of multidimensional vari- 

296      ables x and y.   CCA extracts canonical coefficients u and v such that X = xT u and 

297      Y  =  yT v  (X and Y are canonical variates) possess a maximum correlation coefficient 

298 (Chang et al., 2013) using the following function, 
 

E[XY ] 
R = 

sqrt(E[X2]E[Y 2]) 

E[uT xyT v] 
= 

sqrt(E[uT xxT u]E[vT yyT v]) 

uT Cxyv 

 
 

 
(4) 

= 
sqrt(uT C uvT C   v]) 

,
 

yy 
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299      where Cxx and Cyy are covariance matrices of x and y, respectively and the objective in 

300     above function is to maximize the correlation R.  We use an eigenvalue decomposition 

301   procedure (Forootan, 2014) to find the linear weights producing canonical coefficients, 

302 which imply maximum possible correlations (see details in Steiger and Browne, 1984). 

303    There are different canonical coefficients within each set (at most minimum of variable 

304     numbers in X and Y ) leading to different uncorrelated coefficients.  Nevertheless, the 

305    combination of variables with the first canonical coefficient for each set has the highest 

306 possible multiple correlations with the variables in the other set. 

307 Once the coefficients are calculated, they can be used to find the projection of x and y 

308    onto u and v as canonical variates with maximum correlations. In this study, x contains 

309      the vectors of SPEI, SSI, and MSDI time series calculated for the 156 river basins of 

310     Figure 1, while y contains SST data. Different grid windows (5◦×5◦) are selected over 

311        the  oceans  including  regions,  where  El  Niño  Southern  Oscillation  (ENSO;  Barnston  et 

312     al., 1987), North Atlantic Oscillation (NAO; Barnston et al., 1987), and Indian Ocean 

313     Dipole (IOD; Rao et al., 2002), as well as regions randomly selected in other oceanic 

314    basins as shown in Figure 4. These choices can help to better capture the global climate 

315  impact on the land hydrological events. SST data over different boxes (cf. Figure 4) are 

316     preferred over the climate indicators (e.g., ENSO, IOD, and NAO indices, see Table 1 

317    for their corresponding references) because: (1) larger number of input variables in the 

318   CCA can improve its performance to extract the optimize relationship between predictors 

319    (i.e., SST or teleconnection indices) and predictands (i.e., drought indices), (2) spatially 

320    distributed boxes better represent oceanic variations than single indices, and (3) SST is 

321    a better predictor of precipitation than pressure anomaly often used to produce climate 

322     indices (e.g., L’Heureux et al., 2015). These facts will likely result in better predictions 

323 of global droughts. 
 

 

FIGURE 4 



14  

324 4. Results 
 

325 4.1. Drought Indices 
 

326 Here, we first summarize the global drought results derived by computing SPEI, 

327      SSI, and MSDI for the 156 basins (locations are depicted in Figure 1).  The annual 

328      average of each drought index including SPEI, SSI (SSISm and SSIT W S), and MSDI 

329     (MSDISm and MSDIT W S) are calculated for the period of 2004 to 2016. Figure 5 shows 

330    an example of the averaged drought indices computed in 2008. Maps of other years can 

331 be found in the Electronic Supplementary Material (ESM). 
 

 

FIGURE 5 

 

332 In general,  several similarities are found between SPEI, SSISm  by  ERA-Interim, 

333      and SSIT W S  by  GRACE, e.g., for basins located in the Australian continent or  North 

334   America. These indices, however, contain considerable differences in terms of amplitude 

335      and phase.   For  example,  it can be seen that there are stronger agreements  between 

336        SSISM or MSDISm and SPEI than between SSIT W S  or MSDIT W S and SPEI. The 

337    reason is that changes in soil moisture has a higher correlation with net precipitation 

338     than GRACE TWS. Because, in general, changes in TWS involve complicated surface 

339     and sub-surface processes,  while soil moisture changes is dominated by precipitation 

340      variations (see, e.g., Brocca et al., 2013).  We  also find that in some basins MSDI  fits 

341      better to SSI indices than SPEI such as those located in the north part of Africa. This 

342  similarity indicates that water storage deficiency is likely the dominant contribution in 

343 hydrological drought evolution within these basins. 

344 Correlations between different pairs of drought indices (2003–2016) are shown in Fig- 

345      ure 6. Overall, the SSI from both GRACE TWS and ERA-Interim’s soil moisture 

346      (SSISm or SSIT W S) indicates more pronounced dry and wet  episodes than SPEI and 

347        MSDI. The reason is that SPEI and MSDI incorporate net precipitation, which 

348     contains higher frequency oscillations than the water storage records used in the SSI 

349      (SSISm or SSIT W S).  Stronger multi-year trends in water storage data leads to hydro- 

350 logical drought indices with higher magnitude. 
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FIGURE 6 

 

351 Figure 7 presents average trends of SPEI, SSIT W S  and MSDIT W S  (derived from 

352      GRACE) for the 156 basins during the study period (2004–2016).  It can be seen that 

353     the MSDI over some regions such as the Nile basin and South America is closer to 

354      SPEI, and in  some other cases is  closer to  SSI, e.g.,  within Asia and the Australia’s 

355     western parts.  In the Nile basin, climate variability plays the major role, e.g., through 

356    precipitation (Awange et al., 2014; Omondi et al., 2014), which is better reflected in the 

357      estimated SPEI and MSDI. On the other hand, in the case of Asia and specifically 

358    Middle East, water storage changes, mainly due to anthropogenic impacts, largely drive 

359    the evolution of drought indices, especially those of GRACE TWS (also shown in Figure 

360      6).  This impact can be seen in SSIT W S and MSDIT W S. Most of the basins located  in 

361   Middle East exhibit long-term droughts caused by persistent below normal precipitation 

362     and decline in water storage (see e.g., Forootan et al., 2017; Khaki et al., 2018b).  In 

363     the southern parts of South America, the negative trend can be related to the ice loss 

364     over e.g., the Patagonian Ice Fields (e.g., Foresta et al., 2018). Minor effects can also 

365      be caused by the 2010 Maule earthquake.   On the other hand, some parts such as the 

366     southeast and northeast parts of Asia experience a positive precipitation trend.  As a 

367     result, SPEI indicates wet episodes in these regions. Negative values seen in the SPEI 

368     over the Nile basin are also reflected in the MSDI even though water storage remains 

369    in the normal range, thus, shows that less than normal net precipitation causes droughts 

370 in this basin. 
 

 

FIGURE 7 

 

371 Here, we select 12 basins (of various hydro-climatological conditions) to discuss the 

372     characteristics of drought indices.  These include the Mississippi and Colorado basins 

373     from North America, the Amazon and Salado Atlantico basins from South America, as 

374    well as the Ganges, Brahmaputra, and Euphrates basins from Asia, and finally the Niger, 

375     Chad, Nile and Congo basins in Africa. To this end, for any of these basins, spatially 
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376       averaged SPEI, SSI (both from ERA-Interim and GRACE), and MSDI (derived from 

377 ERA-Interim and GRACE) during the study period are computed and demonstrated in 

378     Figures 8 and 9.  To enhance the visual comparisons, errors of the drought indices are 

379 not shown in these figures. 

380 We find similarities between all the drought indices within the Nile (except during 

381     2014–2016) and Amazon basins, which show that net precipitation and water storage 

382    changes are highly correlated in these basins. The important difference between SPEI 

383   and SSI or MSDI are found to be a phase shift of 1 to 6 months. The values of SSI and 

384      MSDI change slower than SPEI from one year to other.  This, for example, describes 

385      the main differences between SPEI and MSDI or SSI in the Nile basin, where the 

386        net precipitation decrease, e.g., in 2008 (due to La Niña) and the deficiency of incoming 

387  water slowly changes the SSI of 2008–2010 (compare the green and black curves in Figure 

388 8-Nile). 

389 In general, our estimated SPEIs are found to be often different from the SSIs and 

390      MSDIs in other basins.  Over the Euphrates (cf.  Figure 9), SPEI shows a wet  period 

391   in 2011 and 2013 (SPEI > 1, indicating wet and very wet episodes), while other indices 

392    represent dry periods (starting in 2008 and the SSI values changes from 0 to less than -2 

393      in 2015).  A similar pattern can be seen in Ganges, Brahmaputra, and Euphrates. This 

394    is due to a long-term water storage depletion in these basins (see Figure 7), even though 

395 SPEI and SSISm often shows positive values (e.g., during 2013–2014 in the Ganges). 

396 In addition to the phase shifts between SPEI and other SSI or MSDI, remarkable 

397   amplitude discrepancies are also found within most of the basins, e.g., Lake Chad 2007– 

398  2009, Mississippi 2010–2012, and Colorado 2013–2016 (Figure 8). The reason is mainly 

399     attributed to the multi-year trend in the water storage changes, which requires a  long 

400 period of wet or dry episodes to return to a normal level. 
 

 

FIGURE 8 
401 

 

FIGURE 9 

 

402 In summary, the results indicate that the realistic water storage oscillations and trends 
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403    in GRACE TWS data considerably change the magnitude and timing of drought indices 

404    in the assessed basins. However, using only GRACE data to assess hydrological drought 

405    will be likely misleading, since the SSI and MSDI indices can be dominantly influenced 

406      by  existing TWS trends, which is evident by  comparing the green and cyan curves  in 

407    Figure 9. This will be clearer if one compares the indices time series with water storage 

408  variations. Thus, average groundwater and soil moisture time series are obtained from the 

409        WaterGAP Global Hydrology Model (WGHM; more details on   Döll et al., 2003; Müller 

410   et al., 2014) within four selected basins, i.e., Ganges, Brahmaputra, Euphrates, and South 

411  interior. WGHM is chosen here because, beside accounting for the dominant hydrological 

412    processes that occur on the spatial scale of 50 km, it also accounts for human water use. 

413     However, it should be noted that WGHM’s simulations contain uncertainties, thus, its 

414    outputs might be interpreted with caution. The comparison performed here is to assess 

415    hydrological droughts from an independent source rather than GRACE TWS estimates. 

416     From our results, it can be seen that negative groundwater trends are largely captured 

417     by SSIT W S and to a lesser degree by MSDIT W S. Moreover, the differences between soil 

418   moisture and groundwater variations can explain the large discrepancies between SSISm 

419      and SSIT W S. This discrepancy, however, does not equally impact MSDI. These result 

420    confirm our previous finding that the estimated SSI indices are more sensitive to water 

421 storage changes than MSDI. 

422 In Figure 10, we demonstrate the impact of uncertainties on the phase and magnitude 

423    of the drought indices for the two basins of Amazon and Ganges. Our numerical results 

424   indicate that considering 30% multiplicative errors result in up to 1-level in the magnitude 

425    of SPEIs. For computing SSIs, while considering the realistic errors of Figure 2 (Middle), 

426     an error of up to 0.7-level is estimated for the magnitude of SSIs. As  a  result, the 

427     uncertainty of MSDIs is dominated by the error of net precipitation as can be seen in 

428    Figure 10. These uncertainties cause an error in estimating the timing of droughts with 

429    certain level of severity, which can reach up to 3 to 6 months. It is also worth mentioning 

430     that the magnitude of the estimated drought indices, discussed above, depends on the 

431      model data used to extend GRACE TWS backward to 1980.  However,  our  numerical 

432   assessments (not shown here) indicate that the choice of model has only marginally effect, 
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433 which is less than the level of uncertainty shown in Figure 10. 
 

 

FIGURE 10 

 

434 4.2. Characteristics of Global Droughts 
 

435 In this section, we analyze drought and its spatial and temporal variations within the 

436      156 river basins of this study.  To  this end, following Mpelasoka et al. (2017), drought 

437     indices are considered at four timescales of 3-, 6-, 12- and 24-month.  For any of these 

438     timescales, the drought indices are calculated and are assumed to be a drought when 

439     they are continuously less than -0.9 for at least three months (dry condition threshold 

440     suggested by Mpelasoka et al., 2017).  Figure 11 illustrates the frequency (month per 

441      year) of detected droughts for each timescale by SPEI, SSI and MSDI derived from 

442     GRACE. This figure shows the major drought timescale is 3-month suggested by all 

443     indices.  It can be found from this figure that the longer timescale is considered, the 

444     less likely a drought may occur.  As an instance, for 24-month timescale, droughts are 

445     detected for only few regions (e.g., in the Middle East and Africa).  We also find that 

446     drought with longer timescales, e.g., 12-month droughts, can be detected from SSI in 

447    regions such as the Middle East and Northern Africa, while this cannot be detected using 

448  SPEI (compare Figure 11 top-right with middle-right). This is mainly attributed to the 

449    longer memory of TWS (than net precipitation), which has led to extended hydrological 

450     droughts in these regions.  One can also see that the SSIs derived from GRACE are 

451     stronger than the SPEIs, showing that hydrological processes (and their trends) must 

452   be considered in analyzing drought patterns, e.g., for monitoring agricultural droughts. 

453    More frequent drought conditions are captured by the indices within Middle East, North 

454 America, and North West parts of Asia. 
 

 

FIGURE 11 

 

455 We further investigate the spatial variations of drought over each basins by measuring 

456 the portion of grid points exhibiting droughts (for any timescale) to the number of grid 

457   points in each basin. This is done for the period of 2002 to 2016, from which time series of 
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458    the drought area extent for 12 basins are plotted in Figures 12 and 13. From these results, 

459      the estimates of SSI and MSDI that use GRACE data are closer compared to SPEI. 

460   Larger areas can be found with drought conditions during 2003 and 2004 in the Ganges, 

461    Niger, and Brahmaputra basins, 2014–2016 in the Colorado Euphrates, and South interior 

462     mainly from the SSI and MSDI calculations.  A considerable drought extent can be 

463  observed for the Congo basin between 2006 and 2008. During 2012, considerable spatially 

464    extended droughts are found in the Salado Atlantico, Niger, Nile+Red Sea neighbor, and 

465      Congo basins.  In the Colorado basin, while GRACE derived SPEI  does not show any 

466      major drought, both SSI and MSDI depict a strong anomaly, which can be explained 

467 by limited rainfalls. 
 

 

FIGURE 12 
468 

 

FIGURE 13 

 

469 We also calculate time series that reflect the evolution of the percentage of area in 

470    each basin affected by different types of droughts. Linear trends are computed for these 

471     spatial extents and are displayed in Figure 14.  In this figure, drought trends of area 

472     extent are estimated for different timescales of 3-, 6- and 12-month, using SPEI, SSI 

473       from GRACE, and MSDI  derived from GRACE data and net precipitation (P-E). The 

474    results indicate that the estimated trends are positive in most of the basins, for example, 

475      in the Middle East and the southern parts of Africa.  Confirming the previous  results, 

476       Figure 14 indicates that the application of GRACE data in computing SSI  and MSDI 

477   reveal stronger drought patterns, which are distributed over larger areas. To complement 

478   our investigation, we investigate the extent of droughts in the Niger (Ferreira et al., 2018), 

479     Ganges and Brahmaputra (Khandu et al., 2016), Mississippi (Folger and Cody, 2015), 

480    Danube (ICPDR, 2017), and Zambezi (Siderius et al., 2018) as investigated in previous 

481     studies. The results of area extent covered by the three drought indices are reported in 

482     Table 2, which indicate that precipitation deficit in the Niger and Danube basins and 

483 water storage deficit in other basins are the main drivers of droughts in these regions. 
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FIGURE 14 

 

484 4.3. CCA Results to Explore Drought and Teleconnection Hot-spots 

485 In this section, CCA is applied to relate drought indices (SPEI, SSI, and MSDI 

486      from GRACE and net precipitation) within the 156 basins of Figure 1 and the SST 

487    average in 31 windows (5◦×5◦) distributed over the oceans (Figure 4). In order to achieve 

488      the best results, these windows are located in places where stronger correlation coefficients 

489      between SST and the ENSO, NAO, and IOD indices can be found.  At each grid point, 

490    CCA establishes the connection between SST values of all windows on the one hand and 

491    drought indices on the other hand. This connection appears as a set of weight values for 

492    each SST window and each drought index. Therefore, after applying CCA, combinations 

493    of drought indices are achieved at each grid point in a way that each drought index is being 

494     assigned a different weight. The average of computed weights for SPEI, SSI and MSDI 

495      are found to be 18%, 42%, and 40%, respectively.  This shows that SSI and MSDI are 

496     well related to SST data and has the largest impact in the drought combinations, which 

497    can be related to the both effects of rainfall and shortage in water storage (derived from 

498    GRACE data) in drought evolutions. The average extracted combinations of the drought 

499 indices in 12 selected basins of Figures 12 and 13 are shown in Figures 15 and 16. 
 

 

FIGURE 15 
500 

 

FIGURE 16 

 

501 From Figures 15 and 16, multiple droughts are found within the 12 selected basins, 

502     e.g., during 2012 over Mississippi and Colorado, 2012 over Salado Atlantico, Amazon, 

503   and Euphrates, 2008 over Euphrates, South interior, and Mississippi. Despite some sim- 

504     ilarities, some of these patterns have not been captured by individual indices. Besides, 

505     CCA guarantees that the extracted droughts better describe SST variations related to 

506   ocean-atmosphere phenomena including ENSO, IOD, and NAO. We compare the perfor- 

507       mance of the extracted drought by CCA to SPEI, SSI, and MSDI. Considering the 31 

508   boxes in Figure 4, the estimated correlation coefficients between the drought indices and 
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509     the grid cell located in the ENSO, NAO, and IOD area are found to be higher than other 

510    SST time series showing their dominant impact on net precipitation and TWS changes 

511    (see the results in Table 3). Detailed correlation maps (between each drought index and 

512 all the climate indicators) can be found in the Supplementary Material. 

513 Considering the values of the correlation coefficients in Table 3, a stronger relation- 

514       ship is found between hydrological droughts and ENSO (maximum correlation coefficient 

515    of 0.75 between MSDI and ENSO). Correlation coefficients of drought indices and other 

516 climate indicators such as NAO and IOD are found to be moderate. A maximum corre- 

517    lation coefficient of 0.67 (on average) is found between MSDI and ENSO, which shows 

518     stronger agreement between indices and ENSO. These results indicate that ENSO is a 

519     dominant climate mode with widespread influence, whereas IOD and NAO have more 

520 localized influence (see, e.g., van Dijk et al., 2013; Anyah et al., 2018). 
 

 

TABLE 3 

 

521 In Figure 17, annually averaged drought indices predicted by CCA are shown for the 

522  156 basins (cf. Figure 1) covering 2004–2015. Negative values of [-3 -1] indicate strong 

523    relationships between SST changes and the evolution of droughts. The results indicate 

524      that central to northern parts of Asia exhibit a drought condition in most of the  years 

525     shown in Figure 17.   Most parts of Australian continent experience droughts between 

526     2006 and 2011.  Similar drought conditions are also found to be dominant within  the 

527   north part of America, especially in the Mississippi basin during 2004 to 2007. The 2005 

528    drought over the Amazon basin is captured by the CCA results. During 2003–2012, the 

529     eastern parts of Africa (e.g., Nile basin) towards its southern parts are found to be dry, 

530 in particular, in 2007, 2011, 2012, and 2014. 
 

 

FIGURE 17 
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531 5. Conclusion 

 

 

532 Large scale drought events, which strongly influence global and regional water re- 
 

533 sources, can be determined using hydro-climate variables. In this study, traditional 
 

534 univariate, as well as probabilistic multivariate drought indices are estimated by com- 
 

535 bining monthly Terrestrial Water Storage (TWS) change data from GRACE, as well as 
 

536 ERA-Interim’s soil moisture, precipitation, and evapotranspiration products. These in- 
 

537 dices are estimated for the worlds’ 156 major river basins covering 2002–2016, and they 
 

538 reflect both hydrological and meteorological evolutions within these basins. Different 
 

539 drought characteristics of trends, occurrences, areal extent, and frequencies for the 3-, 
 

540 6-, 12-, and 24-month timescales are computed using these indices. We also applied 
 

541 Canonical Correlation Analysis (CCA) to understand relationships between the spatial 
 

542 and temporal evolution of the estimated hydrological droughts and the major large-scale 
 

543 ocean-atmosphere interactions. In summary, we conclude that: 

 

 

544 • The 3-month and 6-month drought timescale are found to be repeated more fre- 

545 quently (than those of longer timescales), globally. 

 

 

546 • In most of the basins, we observe an increase in magnitude, extent, and in some 

547 cases, length of hydrological droughts, which could be due to, e.g., less precipitation 
 

548 and more evapotranspiration beside excessive water usage. 

 

 

549 • The Multivariate Standardized Drought Indices (MSDI) derived by combining 

550 GRACE Terrestrial Water Storage (TWS) and net precipitation, as well as ERA- 
 

551 Interim soil moisture and net precipitation are found to be better correlated to 
 

552 global Sea Surface Temperature (SST) data compared to those drought indices de- 
 

553 rived only from water storage data (Standardized Soil moisture (Storage) Index, 
 

554 SSI) or from net precipitation (Standardized Precipitation Index, SPEI). Besides, 
 

555 the combination of drought indices of SPEI, SSI, and MSDI estimated by CCA 
 

556 indicates a strong connection to the major large-scale ocean-atmosphere phenom- 
 

557 ena (e.g.,  El Niño Southern Oscillation,  North Atlantic Ocean,  and Indian Ocean 
 

558 Dipole). Therefore, CCA might be a useful approach to predict global droughts, 
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559 while knowing the predicted state of SST or the ENSO and other teleconnection 
 

560 indices. 

 

 

561 • GRACE TWS data contain multi-year variations and trend, which are not well 

562 presented in hydrological model simulations and re-analysis data. Therefore, using 
 

563 GRACE data in producing SSI and MSDI better reflects hydro-climatological 
 

564 characteristics of global river basins. However, one needs to be aware of unwanted 
 

565 anomalies in GRACE fields such as those related to the surface deformation and 
 

566 those due to earthquakes. A possible way to eliminate this problem can be achieved 
 

567 through a careful assimilation of GRACE data into hydrological models, (e.g., 
 

568 Khaki et al., 2018b; Schumacher et al., 2018), which will be addressed in future 
 

569 studies. 

 

 

570 • Uncertainty in input data can cause an error in estimation of the severity of droughts 

571 and also introduces a phase shift. Basin-averaged drought indices derived from 
 

572 GRACE TWS are found to be generally more certain than those estimated using 
 

573 ERA-Interim data with a multiplicative error of 30% 

 

 

574 • CCA results reveal regional patterns of hydrological droughts, e.g., the northern 

575 parts of Asia and most parts of Australian continent between 2006 and 2011, which 
 

576 are found to be strongly correlated with the ENSO and the Indian Ocean Dipole 
 

577 (IOD) climate variabilities. Correlation coefficients between drought indices and 
 

578 the North Atlantic Oscillation are found to be moderate. 

 

 

579 Overall, we conclude that the application of CCA on different hydrological indices (de- 
 

580 rived by combining data from different satellite missions) and SST data permits the 
 

581 identification of regions where the interactions between hydrological droughts and tele- 
 

582 connection are strong. This is investigated here for the period of 2003–2016. In the 
 

583 future, this type of analysis by hydrological indices would be completed with new and 
 

584 updated satellite data, in particular the ones provided by the geodetic mission GRACE 
 

585 Follow-On launched in 2018. 
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Figure 1: The world’s 156 major river basins according to the Global Runoff Data Center. Identification 
number of each river basin is reflected in the colorbar. 1 : Magdalena + neighbor; 2 : Orinoco + coastal 
neighbor; 3 : Atlantic North Coast; 4 : Pacific Coast - West Amazon; 5 : Amazon; 6 : Tocantins + 
coasts; 7 : Paranaiba-Atlantico Nordeste; 8 : Sao Francisco-Atlantico Leste; 9 : Pacific Coast - West 
Parana; 10 : Parana; 11 : East Parana; 12 : Salado Atlantico; 13 : Southern Pacific Coast; 14 : Salado 
Pampa + Dulce; 15 : Chubut; 16 : Western Mediterranean Coast; 17 :  Eastern Mediterranean Coast;  
18 : North West Coast; 19 : North West Interior; 20 : North East Interior; 21 :  Gambia - West  Coast; 
22 : Senegal; 23 : Volta - West Coast; 24 : Niger; 25 : Lake Chad - Central Interior; 26 : Nile + Red Sea 
neighbor; 27 : Ogooue - Central West Coast; 28 : Congo; 29 : Rift Valley; 30 : North East Coast; 31 : 
Jubba; 32 : Rufiji - Central East Coast; 33 : Cuanza - South West Coast; 34 : Okavango; 35 : Zambezi; 
36 : Limpopo - South East Coast; 37 : Madagascar; 38 : South West Coast; 39 : Orange; 40 : South 
Atlantic Coast; 41 : North Yukon; 42 : Yukon; 43 : South Yukon; 44 : Mackenzie; 45 : North  Mackenzie 

+ islands; 46 : West Greenland Islands; 47 : North Fraser; 48 : Fraser and neighbors; 49 : Churchill 
and neighbors; 50 : Nelson; 51 : Ouest Hudson; 52 : South Hudson; 53 : Labrador - Hudson Coast; 54 : 
Labrador - Atlantic Coast; 55 : Saint Lawrence; 56 : Columbia; 57 : West Coast - South Columbia; 58 : 
Internal Basins; 59 : Colorado; 60 : Mississippi; 61 : Northern East Coast; 62 : Central East Coast; 63 
: Southern East Coast; 64 : Brazos + Colorado; 65 : Rio Grande; 66 : North Western  Latin America;  
67 :  Northern Latin America; 68 :  Southern Latin America; 69 :  Cuba - Saint Domingue; 70 :  Ob;  71 
: Taz + North and East Ob; 72 : Yenisey; 73 : Pasina + Taimyra; 74 :  Chatanga;  75 :  Olenek;  76 :  
Lena; 77 : Jana; 78 : Indigirka + neighbor; 79 : Kolyma; 80 :  South Kolyma; 81 :  Anadyr + Ponzina; 
82 : Kamchatka; 83 : Amur; 84 : Amu and Syr Darya; 85 : Turgaj - Interior; 86 : Tes-Chem - Interior; 
87 : Tarim + neighbor; 88 : Est Tarim  - Interior;  89 :  Tiberan plateau;  90 :  Interior Loess plateau; 
91 : Kerulen; 92 : Liao + Hai; 93 : Yalu; 94 : Japan; 95 : Huanghe - Yellow; 96 : Heihe + coastal 
neighbor; 97 : Indus; 98 : Western India; 99 : Southern India; 100 : Krishna + coastal neighbor; 101 : 
Godavari; 102 : Mahanadi + Neighbors; 103 : Ganges; 104 : Brahmaputra; 105 : Irrawaddy + neighbor; 
106 : Salween + neighbor; 107 : Mekong + coastal; 108 : Xi + neighbor; 109 : Yangtze + coast; 110 : 
Malaysia; 111 :  Sumatra; 112 :  Borneo; 113 :  Philippines; 114 :  Java;  115 :  Sulawesi; 116 :  Papua;  117 
: Iceland; 118 : Barents Sea; 119 : Northern Divina + neighbor; 120 : Pechora; 121 : Norge Sea; 122 
: West Baltic Sea; 123 : East Baltic Sea; 124 : Neva + Southern Baltic Sea; 125 : Great Britain and 
Ireland; 126 : Loire + Seine + Garonne; 127 : Rhine + Elbe + Weser; 128 : Danube; 129 :  Dniepr +  
Don + Dniestr; 130 : Kuban + neighbor; 131 : Volga; 132 : Ural + Northern Caspian Sea; 133 : Kura 
+ West Caspian Sea; 134 : East Caspian Sea; 135 : Espagne; 136 : Rhone + Italie; 137 : Balkans; 138 : 
Turquie; 139 : Euphrates; 140 : South Caspian interior; 141 : Near East + Sinai; 142 : North interior; 
143 : South interior; 144 : Red Sea - North; 145 : Red Sea - South; 146 : East Arabic; 147 : North 
Arabic; 148 : Coastal Iran; 149 : Ouest; 150 : Interior and South; 151 :  Timor Sea; 152 :  Lake Eyre;  
153 : Murray; 154 : East coast; 155 : New Zealand; 156 : Tasmania. 
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Figure 2: Overview of basin averaged GRACE TWS for 156 basins of Figure 1. (Top) Standard deviation 
of basin averaged GRACE TWS covering 2003–2016 showing the strength of signal. (Middle) Standard 
deviation of the TWS errors. (Bottom) Noise to error ration computed by dividing the top plot by the 
middle one. 
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Figure 3: Time series of W3RA TWS covering 1980–2013, which is fitted to that of GRACE using the 
common period of 2003–2013. The extended time series of 1980–2017 are used for computing drought 
indices, where (top) corresponds to the Ganges River Basin, and (bottom) is related to the Nile River 
Basin. Errors are propagated by considering the basin average errors of Figure 2 (Middle). 
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Figure 4: Locations of 5◦ 5◦ boxes, where their SST data are used to estimate CCA and relate SST 
records to drought indices. 10 boxes are chosen in the regions, where ENSO, IOD, and NAO are usually 
measured and the rest (21 boxes) are distributed to cover the global oceanic basins. 



41  

 

 

 

 
Figure 5: Global SPEI, SSI, and MSDI estimated for the 156 basins of Figure 1. The basin averaged 
drought indices derived for January to December 2008 are temporally averaged. Individual maps for 
each drought index covering 2004–2015 can be found in supplementary information. 
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Figure 6: Correlation coefficient maps derived between drought indices over the 156 basins of Figure 1 
covering 2002–2016. 
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Figure 7: Average trends ([]/year) maps of SPEI, SSI and MSDI derived from GRACE for every basin 
during the study period (2002–2016). 
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Figure 8: Drought indices computed for eight selected basins (Mississippi, Colorado, Amazon, Niger, 
Lake Chad, Congo, Nile, and Salado Atlantico) covering 2003–2016. Locations of the basins are shown 
in Figure 1. Error-bars are not shown to enhance visual comparisons. Y-axes represent the degree of 
dryness and wetness thus they are unit-less. 
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Figure 9: Drought indices computed for three selected basins within Asia (Ganges, Brahmaputra, and 
Euphrates) covering 2003–2016 and corresponding groundwater and soil moisture variations time series. 
Locations of the basins are shown in Figure 1. Error-bars are not shown to enhance visual comparisons. 
Y-axes of the plots on left represent the degree of dryness and wetness thus they are unit-less. 
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Figure 10: Drought indices and their errors computed for the Amazon (left) and Ganges (right) basins 
covering 2003–2016. Locations of the basins are shown in Figure 1 and y-axes represent the degree of 
dryness and wetness thus they are unit-less. 
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Figure 11: Basin averaged frequency (month/year) of detected droughts in different timescales for each 
timescale by SPEI, SSI, and MSDI. 



4
8 

 

 

 

 
 

Figure 12: Time series of the areal extent of droughts within 6 arbitrary basins (Amazon, Salado 
Atlantico, Niger, Lake Chad - Central interior, Nile+Red Sea neighbor, and Congo). The extents are 
computed while considering SPEI, SSI, and MSDI in these basins. Error-bars are not shown to 
enhance visual comparisons. 
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Figure 13: Similar to Figure 12 but for other 6 basins (Colorado, Mississippi, Ganges, Brahmaputra, 
Euphrates, and South interior). Error-bars are not shown to enhance visual comparisons. 
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Figure 14: Areal extents of trends derived from the SPEI, SSI, and MSDI derived for the 156 basins of 
Figure 1, and at different timescales. Note that no significant trend is found for the drought of 24-month 
time. Error-bars are not shown to enhance visual comparisons. The color-bar represents linear rate of 
the degree of dryness and wetness ([ ]/year). 
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Figure 15: Extracted combinations of drought indices from the CCA, which correspond to 6 arbitrary 
basins (Amazon, Salado Atlantico, Niger, Lake Chad - Central interior, Nile+Red Sea neighbor, and 
Congo) and their linear trends. Black dashed lines represent the ‘-0.9’ threshold value. Error-bars are 
not shown to enhance visual comparisons and y-axes represent the degree of dryness and wetness thus 
they are unit-less. 
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Figure 16: Similar to Figure 15 but for 6 other river basins (Colorado, Mississippi, Ganges, Brahmaputra, 
Euphrates, and South interior). Error-bars are not shown to enhance the visual comparisons and y-axes 
represent the degree of dryness and wetness thus they are unit-less. 
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Figure 17: Detected hot spots between 2004 and 2015 based on the CCA results. Each global map 
indicates a combination of drought indices (SSI, SPEI and MSDI) predicted by the CCA. The annual 
averages are shown here. 
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Table 1: A summary of the datasets used in this study. 
 
 

Description Source Acronym Data access 

 

Terrestrial water storage GRACE 

Level 2 
TWS http://www2.csr.utexas.edu/grace/ 

 

Precipitation ERA- 

Interim 
P http://apps.ecmwf.int/datasets/data/ 

interim-full-daily/ 

 

Evapotranspiration ERA- 

Interim 
E http://apps.ecmwf.int/datasets/data/ 

interim-full-daily/ 

 

Vertical summation of the total column soil 

moisture 

ERA- 

Interim 
Sm http://apps.ecmwf.int/datasets/data/ 

interim-full-daily/ 

 

Optimum Interpolation Sea Surface Temper- 

ature 

AVHRR- 

OISST 
SST ftp://eclipse.ncdc.noaa.gov/pub/OI-daily-v2 

 

El Niño Southern Oscillation Index NOAA ENSO www.ncdc.noaa.gov/teleconnections/enso/ 

 

 

North Atlantic Oscillation Index NOAA NAO www.ncdc.noaa.gov/teleconnections/nao/ 

 

 

Indian Ocean Dipole Index NASA IOD http://gcmd.nasa.gov/records/GCMD_Indian_ 

Ocean_Dipole.html 

http://www2.csr.utexas.edu/grace/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
ftp://eclipse.ncdc.noaa.gov/pub/OI-daily-v2
http://www.ncdc.noaa.gov/teleconnections/enso/
http://www.ncdc.noaa.gov/teleconnections/nao/
http://gcmd.nasa.gov/records/GCMD_Indian_Ocean_Dipole.html
http://gcmd.nasa.gov/records/GCMD_Indian_Ocean_Dipole.html
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Table 2: A summary of average extent areas within the drought-affected regions for sample basins with 
specific drought periods. 

 
 

 Areal Extent (%)  

 
Basin 

 
Drought Period 

 
SPEI 

 
SSI 

 
MSDI 

 

Niger 

 

2006–2008 (Ferreira et al., 2018) 

 

83 

 

51 

 

64 

 
Ganges 

 
2010 (Khandu et al., 2016) 

 
29 

 
58 

 
77 

 
Brahmaputra 

 
2005 (Khandu et al., 2016) 

 
33 

 
45 

 
51 

 
Mississippi 

 
2012–2013 (Folger and Cody, 2015) 

 
52 

 
76 

 
61 

 
Danube 

 
2013 (ICPDR, 2017) 

 
71 

 
59 

 
86 

 
Zambezi 

 
2015–2016 (Siderius et al., 2018) 

 
56 

 
35 

 
68 
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Table 3: A summary of the average and maximum correlations between estimated drought indices 
(using GRACE and the ERA-Interim’s soil moisture data separately) and three major large-scale ocean- 
atmosphere interactions of ENSO, NAO, and IOD. 

 

 

NAO ENSO IOD 
 

 

Drought Index Mean Max Mean Max Mean Max 
 

 

SPEI 0.39 0.54 0.57 0.68 0.51 0.62 

MSDI 0.41 0.51 0.67 0.75 0.43 0.72 

SSI 0.39 0.44 0.64 0.70 0.53 0.64 

MSDI 0.37 0.63 0.60 0.65 0.35 0.53 

SSI 0.35 0.48 0.54 0.73 0.40 0.64 

Combination 0.42 0.66 0.78 0.85 0.57 0.79 
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